搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光纤激光器的中红外差频多波长激光产生

蒋建 常建华 冯素娟 毛庆和

引用本文:
Citation:

基于光纤激光器的中红外差频多波长激光产生

蒋建, 常建华, 冯素娟, 毛庆和

Mid-IR multiwavelength difference frequency generation laser source based on fiber lasers

Jiang Jian, Chang Jian-Hua, Feng Su-Juan, Mao Qing-He
PDF
导出引用
  • 针对由YDFL和EDFL作为基频光源的QPM-DFG激光系统,利用PPMgLN晶体的色散关系及其温度特性,有效拓宽了QPM波长接受带宽.模拟结果表明,当采用1550和1060 nm波段的EDFL和YDFL分别作为DFG的信号和抽运光源时,对于相同的中红外波段,满足QPM条件所允许的抽运光波长变化范围远大于信号光波长变化范围.当固定信号光波长为1560 nm时,对于给定的晶体温度,1060 nm波段抽运光的QPM接受带宽超过17 nm,对应于中红外差频光带宽可约180 nm.采用多波长YDFL作为抽运源,单
    The quasi-phase-matched (QPM) wavelength acceptation bandwidth for a difference frequency generation (DFG)mid-IR laser source with fiber lasers as the fundamental sources is effectively broadened by using the dispersion relations and its temperature characteristic of periodically poled MgO-doped LiNbO3 (PPMgLN). Our simulation results show that, with an erbium-doped fiber laser (EDFL) and a ytterbium-doped fiber laser (YDFL) respectively operating near 1550 and 1060 nm wave-bands as the signal source and pump source, for the same mid-IR wavelength regions, the allowable wavelength range given by the QPM condition for the pump wave is much larger than that for the signal wave. When the wavelength of the signal wave is fixed at 1560 nm, for a given optimized crystal temperature, the acceptance bandwidth for the pump wave is over 17 nm, corresponding to the acceptance bandwidth for the idler wave of about 180 nm. Based on it, by using a multiwavelength YDFL and a single wavelength EDFL cascaded by an erbium-doped fiber amplifier (EDFA) respectively as the pump source and the signal source, 14-wavelength mid-IR laser lines, with a spacing of about 14 nm in between, are obtained simultaneously with our QPM-DFG laser system when both the temperature and the grating period of the PPMgLN used being kept unchanged at 73.5 ℃ and 30 μm respectively. Moreover, the mid-IR multiwavelength laser lines may be tuned synchronously by varying the signal wavelength.
    • 基金项目: 国家自然科学基金(批准号:60677050),国家重点基础研究发展计划(批准号:2007CB936603)资助的课题.
    [1]

    Richter D, Fried A, Wert B P, Waldga J G, Tittel F K 2001 Appl. Phys. B 75 281

    [2]

    Takahashi M, Ohara S, Tezuka T, Ashizawa H, Endo M, Yamaguchi S, Nanri K, Fujioka T 2004 Appl. Phys. B 78 229

    [3]

    Ding X, Zhang S M, Ma H M, Pang M, Yao J Q, Li Z 2008 Chin. Phys. B 17 0211

    [4]

    Wu B, Cai S S, Shen J W, Shen Y X 2007 Acta Phys. Sin. 56 2684 (in Chinese) [吴 波、蔡双双、沈剑威、沈永行 2007 56 2684]

    [5]

    Zhang T L, Zhang B G, Xu D G, Wang P, Ji F, Yao J Q 2008 Chin. Phys. B 17 633

    [6]

    Straub A, Gmachl C, Sivco D L, Sergent A M, Capasso F, Cho A Y 2002 Electron. Lett. 38 565

    [7]

    Asobe M, Tadanaga O, Umeki T, Yanagawa T, Nishida Y, Magari K, Suzuki H 2007 Opt. Lett. 32 3388

    [8]

    Umeki T, Asobe M, Nishida Y, Tadanaga O, Magari K, Yanagawa T, Suzuki H 2007 Opt. Lett. 32 1129

    [9]

    Chou M H, Parameswaran K R, Fejer M M, Brener I 1999 Opt. Lett. 24 1157

    [10]

    Lee Y L, Noh Y C, Jung C, Yu T J, Yu B A, Lee J, Ko D K, Oh K 2005 Appl. Phys. Lett. 86 011104

    [11]

    Yanagawa T, Kanbara H, Tadanaga O, Asobe M, Suzuki H, Yumoto J 2005 Appl. Phys. Lett. 86 161106

    [12]

    Gao Z S, Han L, Liang W G, Deng L H, Wang H, Xu C Q, Chen W D, Zhang W J, Gong Z B, Gao X M 2008 Opt. Commun. 281 3878

    [13]

    Ashizawa H, Ohara S, Yamaguchi S, Takahashi M, Endo M, Nanri K, Fujioka T, Tittel F K 2003 Jpn. J. Appl. Phys. 42 1263

    [14]

    Yanagawa T, Tadanaga O, Nishida Y, Miyazawa H, Magari K, Asobe M, Suzuki H 2006 Opt. Lett. 31 960

    [15]

    Zelmon D E, Small D L, Jundt D 1997 J. Opt. Soc. Am. B 14 3319

    [16]

    Mao Q H, Zhu Z J, Sun Q, Liu W Q, Lit J W Y 2008 Opt. Commun. 281 3153

    [17]

    Feng S J, Shang L, Mao Q H 2007Acta Phys. Sin. 56 4677 (in Chinese) [冯素娟、尚 亮、毛庆和 2007 56 4677]

    [18]

    Mao Q H, Feng S J, Jiang J, Zhu Z J, Liu W Q 2007 Acta Phys. Sin. 56 296(in Chinese) [毛庆和、冯素娟、蒋 建、朱宗玖、刘文清2008 56 296]

    [19]

    Jiang J, Li X Q, Feng S J, Wang Z S, Mao Q H, Liu W Q 2008 Acta Opt. Sin. 28 295 (in Chinese) [蒋 建、李晓芹、冯素娟、王执山、毛庆和、刘文清 2008 光学学报 28 295]

    [20]

    Mao Q H, Sun X H, Zhang M D, Wang J S 1999 Opt. Commun. 159 149

  • [1]

    Richter D, Fried A, Wert B P, Waldga J G, Tittel F K 2001 Appl. Phys. B 75 281

    [2]

    Takahashi M, Ohara S, Tezuka T, Ashizawa H, Endo M, Yamaguchi S, Nanri K, Fujioka T 2004 Appl. Phys. B 78 229

    [3]

    Ding X, Zhang S M, Ma H M, Pang M, Yao J Q, Li Z 2008 Chin. Phys. B 17 0211

    [4]

    Wu B, Cai S S, Shen J W, Shen Y X 2007 Acta Phys. Sin. 56 2684 (in Chinese) [吴 波、蔡双双、沈剑威、沈永行 2007 56 2684]

    [5]

    Zhang T L, Zhang B G, Xu D G, Wang P, Ji F, Yao J Q 2008 Chin. Phys. B 17 633

    [6]

    Straub A, Gmachl C, Sivco D L, Sergent A M, Capasso F, Cho A Y 2002 Electron. Lett. 38 565

    [7]

    Asobe M, Tadanaga O, Umeki T, Yanagawa T, Nishida Y, Magari K, Suzuki H 2007 Opt. Lett. 32 3388

    [8]

    Umeki T, Asobe M, Nishida Y, Tadanaga O, Magari K, Yanagawa T, Suzuki H 2007 Opt. Lett. 32 1129

    [9]

    Chou M H, Parameswaran K R, Fejer M M, Brener I 1999 Opt. Lett. 24 1157

    [10]

    Lee Y L, Noh Y C, Jung C, Yu T J, Yu B A, Lee J, Ko D K, Oh K 2005 Appl. Phys. Lett. 86 011104

    [11]

    Yanagawa T, Kanbara H, Tadanaga O, Asobe M, Suzuki H, Yumoto J 2005 Appl. Phys. Lett. 86 161106

    [12]

    Gao Z S, Han L, Liang W G, Deng L H, Wang H, Xu C Q, Chen W D, Zhang W J, Gong Z B, Gao X M 2008 Opt. Commun. 281 3878

    [13]

    Ashizawa H, Ohara S, Yamaguchi S, Takahashi M, Endo M, Nanri K, Fujioka T, Tittel F K 2003 Jpn. J. Appl. Phys. 42 1263

    [14]

    Yanagawa T, Tadanaga O, Nishida Y, Miyazawa H, Magari K, Asobe M, Suzuki H 2006 Opt. Lett. 31 960

    [15]

    Zelmon D E, Small D L, Jundt D 1997 J. Opt. Soc. Am. B 14 3319

    [16]

    Mao Q H, Zhu Z J, Sun Q, Liu W Q, Lit J W Y 2008 Opt. Commun. 281 3153

    [17]

    Feng S J, Shang L, Mao Q H 2007Acta Phys. Sin. 56 4677 (in Chinese) [冯素娟、尚 亮、毛庆和 2007 56 4677]

    [18]

    Mao Q H, Feng S J, Jiang J, Zhu Z J, Liu W Q 2007 Acta Phys. Sin. 56 296(in Chinese) [毛庆和、冯素娟、蒋 建、朱宗玖、刘文清2008 56 296]

    [19]

    Jiang J, Li X Q, Feng S J, Wang Z S, Mao Q H, Liu W Q 2008 Acta Opt. Sin. 28 295 (in Chinese) [蒋 建、李晓芹、冯素娟、王执山、毛庆和、刘文清 2008 光学学报 28 295]

    [20]

    Mao Q H, Sun X H, Zhang M D, Wang J S 1999 Opt. Commun. 159 149

  • [1] 杨亚涛, 邹媛, 曾琼, 宋宇锋, 王可, 王振洪. 多孤子和类噪声脉冲共存的锁模光纤激光器.  , 2022, 71(13): 134205. doi: 10.7498/aps.71.20220250
    [2] 李铭洲, 李志远. 应用于宽带中红外激光产生的啁啾周期极化铌酸锂晶体结构设计及数值模拟.  , 2022, 71(13): 134206. doi: 10.7498/aps.71.20220016
    [3] 张倩, 金鑫鑫, 张梦, 郑铮. 基于二维纳米材料可饱和吸收体的中红外超快光纤激光器.  , 2020, 69(18): 188101. doi: 10.7498/aps.69.20200472
    [4] 夏情感, 肖文波, 李军华, 金鑫, 叶国敏, 吴华明, 马国红. 光纤激光器中包层功率剥离器散热性能的优化.  , 2020, 69(1): 014204. doi: 10.7498/aps.69.20191093
    [5] 刘家兴, 刘侠, 钟守东, 王健强, 张大鹏, 王兴龙. 光纤光栅对的参数匹配与激光输出特性.  , 2019, 68(11): 114205. doi: 10.7498/aps.68.20190178
    [6] 杨文海, 刁文婷, 蔡春晓, 宋学瑞, 冯付攀, 郑耀辉, 段崇棣. 1064 nm固体激光器和光纤激光器在制备压缩真空态光场实验中的对比研究.  , 2019, 68(12): 124201. doi: 10.7498/aps.68.20182304
    [7] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器.  , 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [8] 马金栋, 吴浩煜, 路桥, 马挺, 时雷, 孙青, 毛庆和. 基于飞秒锁模光纤激光脉冲基频光的差频产生红外光梳.  , 2018, 67(9): 094207. doi: 10.7498/aps.67.20172503
    [9] 王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生.  , 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [10] 傅宽, 徐中巍, 李海清, 彭景刚, 戴能利, 李进延. 石墨烯被动锁模全正色散掺镱光纤激光器中的暗脉冲及其谐波.  , 2015, 64(19): 194205. doi: 10.7498/aps.64.194205
    [11] 于永吉, 陈薪羽, 成丽波, 王超, 吴春婷, 董渊, 李述涛, 金光勇. 基于MgO:QPLN的多光参量振荡器电场调谐特性理论与实验研究.  , 2015, 64(16): 164208. doi: 10.7498/aps.64.164208
    [12] 张丽梦, 胡明列, 顾澄琳, 范锦涛, 王清月. 高功率, 红光至中红外可调谐腔内和频光学参量振荡器.  , 2014, 63(5): 054205. doi: 10.7498/aps.63.054205
    [13] 谢辰, 胡明列, 张大鹏, 柴路, 王清月. 基于多通单元的高能量耗散孤子锁模光纤振荡器.  , 2013, 62(5): 054203. doi: 10.7498/aps.62.054203
    [14] 刘艳, 汪磊石, 陶沛琳, 冯素春, 尹国路, 任文华, 谭中伟, 简水生. 波长可调谐取样光纤光栅激光器的输出特性研究.  , 2011, 60(2): 024207. doi: 10.7498/aps.60.024207
    [15] 方晓惠, 胡明列, 宋有建, 谢辰, 柴路, 王清月. 多芯光子晶体光纤锁模激光器.  , 2011, 60(6): 064208. doi: 10.7498/aps.60.064208
    [16] 延凤平, 毛向桥, 王琳, 傅永军, 魏淮, 郑凯, 龚桃荣, 刘鹏, 陶沛琳, 简水生. 基于偏振保持掺Er3+光纤的高稳定性单波长光纤激光器.  , 2009, 58(9): 6296-6299. doi: 10.7498/aps.58.6296
    [17] 许 鸥, 鲁韶华, 简水生. 用于单频光纤激光器的光纤光栅双腔Fabry-Perot结构传输谱特性理论研究.  , 2008, 57(10): 6404-6411. doi: 10.7498/aps.57.6404
    [18] 雷 兵, 冯 莹, 刘泽金. 利用全光纤耦合环实现三路光纤激光器的相位锁定.  , 2008, 57(10): 6419-6424. doi: 10.7498/aps.57.6419
    [19] 张百钢, 姚建铨, 路 洋, 纪 峰, 张铁犁, 徐德刚, 王 鹏, 徐可欣. 抽运光角度调谐准相位匹配光学参量振荡器的研究.  , 2006, 55(3): 1231-1236. doi: 10.7498/aps.55.1231
    [20] 李永民, 吴迎瑞, 张宽收, 彭墀. 利用准相位匹配光学参量振荡器获得可调谐强度差压缩光.  , 2003, 52(4): 849-852. doi: 10.7498/aps.52.849
计量
  • 文章访问数:  9494
  • PDF下载量:  889
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-11-09
  • 修回日期:  2010-01-30
  • 刊出日期:  2010-11-15

/

返回文章
返回
Baidu
map