搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

淀粉样多肽Aβ42与Medin共聚集的分子动力学模拟研究

潘文雁 程传勇 牛菁菁 元冰 杨恺 董雪薇

引用本文:
Citation:

淀粉样多肽Aβ42与Medin共聚集的分子动力学模拟研究

潘文雁, 程传勇, 牛菁菁, 元冰, 杨恺, 董雪薇

Molecular dynamic simulation study on the coaggregation between amyloid-β and Medin

PAN Wenyan, CHENG Chuanyong, NIU Jingjing, YUAN Bing, YANG Kai, DONG Xuewei
Article Text (iFLYTEK Translation)
PDF
导出引用
  • Medin淀粉样蛋白的聚集导致动脉壁退化和脑血管功能障碍,参与多种血管疾病的发生与发展。在血管性痴呆或阿尔茨海默症患者的脑小动脉中发现Medin聚集体增加,且Medin与血管β-淀粉样蛋白(Aβ)沉积物共定位。实验证实Medin通过与Aβ形成异源纤维并交叉接种Aβ而直接与Aβ产生作用并促进其聚集。然而,Medin与Aβ共聚集的微观机制仍不清楚。本文利用大规模的全原子副本交换分子动力学模拟(累计模拟时间72 µs),对Aβ42与Medin三聚体在不同多肽环境(即自聚集vs.共聚集)的相互作用及构象分布进行了研究。结果表明,Aβ42与Medin的亲和力更高,Aβ42与Medin在自身或彼此结合时具有相似的分子识别位点或区域,为共聚集提供基础。Aβ42的N端与Medin的C端在Aβ42-Medin交叉聚集中起到关键作用。更重要的是,共聚集显著改变了Aβ42与Medin的相互作用强度、方式以及结构特征。Aβ42-Medin三聚体中,Aβ42分子间相互作用减弱,仅保留疏水核心区域(16KLVFFA21)之间的结合而提高其他区域的自由度; Medin形成更多的β结构与更少的helix结构,但Aβ42却形成更多的helix与更少的β;而Medin中高β倾向性区域向肽链中部和C端迁移,表明Medin可能通过C端形成β结构作为核心从而驱动其与Aβ42的协同聚集。本工作在原子水平上详尽地阐明了共聚集对Aβ42与Medin相互作用与结构特征的影响,为理解Aβ42-Medin共聚集分子机制以及不同疾病之间交叉关联的病理机制提供了有益见解。
    The aggregation of Medin is closely associated with the arterial wall degeneration and cerebrovascular dysfunction. Medin aggregates are increased in cerebral arterioles of patients with vascular dementia or Alzheimer’s disease, and medin co-localizes with vascular amyloid-β (Aβ) deposits. Previous study demonstrated that Medin interacts directly with Aβ, forming heterologous fibrils with Aβ and promoting Aβ aggregation. However, the underlying mechanism of the co-aggregation between Medin and Aβ remains largely elusive. Here, we explored the interactions and conformational ensembles of Aβ42/Medin trimers in different peptide environments (self-aggregation vs. co-aggregation) by performing allatom replica exchange molecular dynamic simulation on Aβ42/Medin homotrimers and Aβ42-Medin heterotrimer with an accumulated simulation time of 72 μs. Our results reveal that Aβ42 exhibits higher affinity with Medin, and both Aβ42 and Medin have similar molecular recognition sites for self-aggregation and co-aggregation. The N-terminus of Aβ42 and the C-terminus of Medin play critical roles in Aβ42-Medin cross-talk. More importantly, co-aggregation significantly alters the interaction strength, binding patterns and structural characteristics of Aβ42 and Medin. Intermolecular interactions of Aβ42 trimers are relatively weak among three trimers and the binding sites are concentrated between N- and N-termini, between N- and C-termini as well as between C- and C-termini of Aβ42. In contrast, intermolecular interactions of Medin trimers are strongest and the binding sites are widely and uniformly distributed in Medin peptides. Intermolecular interactions of Aβ42 in Aβ42-Medin heterotrimer are decreased compared with Aβ42 trimers, only the binding of the hydrophobic core regions (16KLVFFA21) is retained and other regions of Aβ42 gain increased flexibility. 2D free energy landscapes reveal distinct conformational diversities among the homo- and heterotrimers, with the order of diversity being Medin/Aβ42-Medin trimers > Aβ42 trimers. The Rg of Aβ42 trimers is smaller than that of the other two trimers, implying that Aβ42 trimers adopt a more compact structure, whereas Medin/Aβ42- Medin trimers exhibit a relatively loose conformation. Aβ42 trimers possess the highest β content whereas Medin trimers exhibit the lowest β probability. We find that Aβ42-Medin co-aggregation induces Medin to form more β-structures with longer length and fewer helices, while promotes Aβ42 to form more helices and fewer β-structures. High β- propensity regions of Medin in heterotrimers shift towards the C-terminus of Medin, suggesting that Medin utilize its C-terminal β region as a core motif to drive its co-aggregation with Aβ42. These results elucidate the detailed influences of co-aggregation on the interactions and conformations of Aβ42 and Medin. This work provides key insights into the molecular mechanism of Aβ42-Medin co-aggregation and the pathological cross-talk between related diseases.
  • [1]

    Giordano X, Fernandez M C 2023 Alzheimer's Dement. 19 e075955

    [2]

    Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen C E, Cummings J, van der Flier W M 2021 Lancet 397 1577

    [3]

    Li X, Yang Z, Chen Y, Zhang S, Wei G, Zhang L 2023 J. Phys. Chem. B 127 4050

    [4]

    Ball K A, Phillips A H, Wemmer D E, Head-Gordon T 2013 Biophys. J. 104 2714

    [5]

    Li X, Zhang Y, Wang Y, Zhang S, Zhang L 2024 J. Phys. Chem. B 128 1843

    [6]

    Nunan J, Small D H 2000 FEBS Lett. 483 6

    [7]

    Huang Y, Potter R, Sigurdson W, Santacruz A, Shih S, Ju Y E, Kasten T, Morris J C, Mintun M, Duntley S, Bateman R J 2012 Arch. Neurol. 69 51

    [8]

    Häggqvist B, Näslund J, Sletten K, Westermark G T, Mucchiano G, Tjernberg L O, Nordstedt C, Engström U, Westermark P 1999 Proc. Natl. Acad. Sci. USA 96 8669

    [9]

    Karamanova N, Truran S, Serrano G E, Beach T G, Madine J, Weissig V, Davies H A, Veldhuizen J, Nikkhah M, Hansen M, Zhang W, D'Souza K, Franco D A, Migrino R Q 2020 J. Am. Heart Assoc. 9 e014810

    [10]

    Madine J, Davies H A, Migrino R Q, Ruotsalainen S E, Wagner J, Neher J J 2023 Nat. Aging 3 1039

    [11]

    Larsson A, Söderberg L, Westermark G T, Sletten K, Engström U, Tjernberg L O, Näslund J, Westermark P 2007 Biochem. Biophys. Res. Commun. 361 822

    [12]

    Eisenberg D, Jucker M 2012 Cell 148 1188

    [13]

    Iadanza M G, Jackson M P, Hewitt E W, Ranson N A, Radford S E 2018 Nat. Rev. Mol. Cell Biol. 19 755

    [14]

    Ren B, Zhang Y, Zhang M, Liu Y, Zhang D, Gong X, Feng Z, Tang J, Chang Y, Zheng J 2019 J. Mater. Chem. B 7 7267

    [15]

    Zhang Y, Tang Y, Zhang D, Liu Y, He J, Chang Y, Zheng J 2021 Chin. J. Chem. Eng. 30 225

    [16]

    Migrino R Q, Karamanova N, Truran S, Serrano G E, Davies H A, Madine J, Beach T G 2020 Alzheimers Dement. 12 e12072

    [17]

    Tayler H, Miners J S, Güzel Ö, MacLachlan R, Love S 2021 Brain Pathol. 31 e12935

    [18]

    Benson M D, Buxbaum J N, Eisenberg D S, Merlini G, Saraiva M J M, Sekijima Y, Sipe J D, Westermark P 2020 Amyloid 27 217

    [19]

    Jackson R J, Rudinskiy N, Herrmann A G, Croft S, Kim J M, Petrova V, RamosRodriguez J J, Pitstick R, Wegmann S, Garcia-Alloza M, Carlson G A, Hyman B T, Spires-Jones T L 2016 Eur. J. Neurosci. 44 3056

    [20]

    Wagner J, Degenhardt K, Veit M, Louros N, Konstantoulea K, Skodras A, Wild K, Liu P, Obermüller U, Bansal V, Dalmia A, Häsler L M, Lambert M, De Vleeschouwer M, Davies H A, Madine J, Kronenberg-Versteeg D, Feederle R, Del Turco D, Nilsson K P R, Lashley T, Deller T, Gearing M, Walker L C, Heutink P, Rousseau F, Schymkowitz J, Jucker M, Neher J J 2022 Nature 612 123

    [21]

    Huang F, Fan X, Wang Y, Zou Y, Lian J, Wang C, Ding F, Sun Y 2024 Brief. Bioinform. 25 bbad526

    [22]

    Howitz W J, Wierzbicki M, Cabanela R W, Saliba C, Motavalli A, Tran N, Nowick J S 2020 J. Am. Chem. Soc. 142 15870

    [23]

    Davies H A, Madine J, Middleton D A 2015 J. Biol. Chem. 290 7791

    [24]

    Davies H A, Rigden D J, Phelan M M, Madine J 2017 Sci. Rep. 7 45224

    [25]

    Huang F, Yan J, Zhang X, Xu H, Lian J, Yang X, Wang C, Ding F, Sun Y 2024 Colloids Surf. B 244 114192

    [26]

    Huang F, Fan X, Wang Y, Wang C, Zou Y, Lian J, Ding F, Sun Y 2023 J. Chem. Inf. Model. 63 6376

    [27]

    Xu C, Lin Z, Yang K, Yuan B 2020 Acta Phys. Sin. 69 108701 ( in Chinese) [徐 成, 林召, 杨恺, 元冰 2020 69 108701]

    [28]

    Wang K, Xu C, Wu J F, Yang K, Yuan B 2021 Acta Phys. Sin. 70 178701 ( in Chinese) [王康, 徐成, 吴晋锋, 杨恺, 元冰 2021 70 178701]

    [29]

    Tan J P, Zhang W T, Xu C, Lu X M, Zhu W S, Yang K, Yuan B 2024 Acta Phys. Sin. 73 188702 ( in Chinese) [谭金鹏, 张婉婷, 徐成, 卢雪梅, 朱文圣, 杨恺, 元冰 2024 73 188702]

    [30]

    Tu W, Dong X, Ou L, Zhang X, Yuan B, Yang K 2023 Chem. Res. Chin. Univ. 39 829

    [31]

    Lao Z, Tang Y, Dong X, Tan Y, Li X, Liu X, Li L, Guo C, Wei G 2024 Nanoscale 16 4025

    [32]

    Liu X, Lao Z, Li X, Dong X, Wei G 2022 Phys. Chem. Chem. Phys. 24 16263

    [33]

    Qi R, Wei G, Ma B, Nussinov R 2018 Methods Mol. Biol. 1777 101

    [34]

    Sugita Y, Okamoto Y 1999 Chem. Phys. Lett. 314 141

    [35]

    Miron R A, Fichthorn K A 2003 J. Chem. Phys. 119 6210

    [36]

    Kästner J 2011 Wiley Interdiscip. Rev. Comput. Mol. Sci. 1 932

    [37]

    Qi R, Luo Y, Wei G, Nussinov R, Ma B 2015 J. Phys. Chem. Lett. 6 3276

    [38]

    Dong X, Bera S, Qiao Q, Tang Y, Lao Z, Luo Y, Gazit E, Wei G 2021 J. Phys. Chem. Lett. 12 2576

    [39]

    Li X, Chen Y, Yang Z, Zhang S, Wei G, Zhang L 2024 Int. J. Biol. Macromol. 254 127841

    [40]

    Tan Y, Chen Y, Liu X, Tang Y, Lao Z, Wei G 2023 Int. J. Biol. Macromol. 241 124659

    [41]

    Lao Z, Dong X, Liu X, Li F, Chen Y, Tang Y, Wei G 2022 J. Chem. Inf. Model. 62 3227

    [42]

    Dong X, Qi R, Qiao Q, Li X, Li F, Wan J, Zhang Q, Wei G 2021 Phys. Chem. Chem. Phys. 23 20406

    [43]

    Mo Y, Brahmachari S, Lei J, Gilead S, Tang Y, Gazit E, Wei G 2018 ACS Chem. Neurosci. 9 2741

    [44]

    Guo C, Côté S, Mousseau N, Wei G 2015 J. Phys. Chem. B 119 3366

    [45]

    Gremer L, Schölzel D, Schenk C, Reinartz E, Labahn J, Ravelli R B G, Tusche M, Lopez-Iglesias C, Hoyer W, Heise H, Willbold D, Schröder G F 2017 Science 358 116

    [46]

    Jumper J, Evans R, Pritzel A, Green T, Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A, Potapenko A, Bridgland A, Meyer C, Kohl S A A, Ballard A J, Cowie A, Romera-Paredes B, Nikolov S, Jain R, Adler J, Back T, Petersen S, Reiman D, Clancy E, Zielinski M, Steinegger M, Pacholska M, Berghammer T, Bodenstein S, Silver D, Vinyals O, Senior A W, Kavukcuoglu K, Kohli P, Hassabis D 2021 Nature 596 583

    [47]

    Humphrey W, Dalke A, Schulten K 1996 J. Mol. Graph. 14 33

    [48]

    Abraham M J, Murtola T, Schulz R, Páll S, Smith J C, Hess B, Lindahl E 2015 SoftwareX 1-2 19

    [49]

    Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis J L, Dror R O, Shaw D E 2010 Proteins 78 1950

    [50]

    Chen Y, Li X, Zhan C, Lao Z, Li F, Dong X, Wei G 2021 ACS Chem. Neurosci. 12 4007

    [51]

    Lopes P E, Guvench O, MacKerell A D, Jr. 2015 Methods Mol. Biol. 1215 47

    [52]

    Tan Y, Chen Y, Pan T, Tang Y, Liu X, Yu Y, Wei G 2025 J. Chem. Inf. Model. 65 4643

    [53]

    Wang W 2021 Phys. Chem. Chem. Phys. 23 777

    [54]

    Best R B, Zheng W, Mittal J 2014 J. Chem. Theory Comput. 10 5113

    [55]

    Huang J, Rauscher S, Nawrocki G, Ran T, Feig M, de Groot B L, Grubmüller H, MacKerell A D, Jr. 2017 Nat. Methods 14 71

    [56]

    Piana S, Donchev A G, Robustelli P, Shaw D E 2015 J. Phys. Chem. B 119 5113

    [57]

    Zerze G H, Zheng W, Best R B, Mittal J 2019 J. Phys. Chem. Lett. 10 2227

    [58]

    Parrinello M, Rahman A 1981 J. Appl. Phys. 52 7182

    [59]

    Bussi G, Donadio D, Parrinello M 2007 J. Chem. Phys. 126 014101

    [60]

    Li M, Johnson W L, Goddard W A 1992 MRS Online Proc. Libr. 291 285

    [61]

    Miyamoto S, Kollman P A 1992 J. Comput. Chem. 13 952

    [62]

    Hess B 2008 J. Chem. Theory Comput. 4 116

    [63]

    Kabsch W, Sander C 1983 Biopolymers 22 2577

    [64]

    Daura X, Gademann K, Jaun B, Seebach D, van Gunsteren W F, Mark A E 1999 Angew. Chem. Int. Ed. 38 236

    [65]

    Zhang Y, Liu Y, Zhao W, Sun Y 2021 Int. J. Biol. Macromol. 193 1

    [66]

    Li X, Lao Z, Zou Y, Dong X, Li L, Wei G 2021 J. Phys. Chem. B 125 2050

    [67]

    Delano W L 2002 Proteins 30 442

    [68]

    Rigsby R E, Parker A B 2016 Biochem. Mol. Biol. Educ. 44 433

    [69]

    Okumura H, Itoh S G 2022 Molecules 27 2483

    [70]

    Häggqvist B, Näslund J, Sletten K, Westermark G T, Mucchiano G, Tjernberg L O, Nordstedt C, Engström U, Westermark P 1999 Proc. Natl. Acad. Sci. USA 96 8669

    [71]

    Larsson A, Söderberg L, Westermark G T, Sletten K, Engström U, Tjernberg L O, Näslund J, Westermark P 2007 Biochem. Biophys. Res. Commun. 361 822

    [72]

    Madine J, Copland A, Serpell L C, Middleton D A 2009 Biochemistry 48 3089

    [73]

    Davies H A, Rigden D J, Phelan M M, Madine J 2017 Sci. Rep. 7 45224

计量
  • 文章访问数:  60
  • PDF下载量:  0
  • 被引次数: 0
出版历程
  • 上网日期:  2025-06-04

/

返回文章
返回
Baidu
map