搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Rice-Mele拓扑泵浦模型中的非绝热演化理论研究

张硕实 常名立 刘墨点 董建文

引用本文:
Citation:

Rice-Mele拓扑泵浦模型中的非绝热演化理论研究

张硕实, 常名立, 刘墨点, 董建文

Theoretical study of non-adiabatic evolution in Rice-Mele topological pumping model

ZHANG Shuoshi, CHANG Mingli, LIU Modian, DONG Jianwen
Article Text (iFLYTEK Translation)
PDF
导出引用
  • 拓扑泵浦模型可以在光学波导阵列体系中调控光场,有望实现高抗干扰能力的片上光子器件。本文从Rice-Mele拓扑泵浦模型出发,分析了当系统绝热演化条件随结构长度缩短被破坏后的光场演化过程,利用能带理论研究了其物理本质。发现受绝热属性调控,在特定参数下光场模式会经历非绝热演化但最终以边界态输出。该演化结果与绝热演化一致,可被称为等效绝热演化过程,后利用微扰理论证明了该特殊现象的物理本质是能带干涉。同时表明了绝热属性可以有效调控系统演化末态与边界态的一致程度,实现完全一致或完全相异的两种输出结果。该工作补充了拓扑泵浦非绝热演化的理论分析方法,拓展了拓扑泵浦模型的光场调控能力,可以作为光学波导阵列体系的基础设计理论,有望设计高抗干扰且小型化的片上光子器件。
    Topological pumping based on Thouless pumping can be effectively applied to optical waveguide array systems to achieve robust light manipulation with strong disturbance resistance. One of its typical models, the Rice-Mele (R-M) model, enables directional light field transmission from the leftmost (rightmost) waveguide to the rightmost (leftmost) waveguide, which can be utilized to realize fabrication-tolerant optical couplers. Adiabatic evolution is a critical factor influencing the transport of topological eigenstates. However, it requires the system’s parameter variation to be sufficiently slow, which leads to excessively long waveguide lengths, limiting device compactness. To reduce size, non-adiabatic evolution offers a feasible alternative. Meanwhile, the adiabatic properties of topological pumping models introduce new degrees of freedom, expanding possibilities for light manipulation. Based on the R-M model, this work analyzes the relationship between adiabatic property and structure length L, investigates light field evolution behavior when adiabatic condition is violated, and explores transition from adiabatic to non-adiabatic regimes. When adiabatic condition is satisfied (L1=1000μm), the light field evolution aligns with the eigen edge state. The output mode presents as the edge state, localized at the edge waveguide. As length shortens (L2=250μm and L4=30μm), the deviations between light field and eigen edge state arise, and the eigen bulk states get involved in the light field. The output modes present as the superposition of edge and bulk states, and energy spread to other waveguides. At the specific length (L3=110μm), the light-field undergoes non-adiabatic evolution, initially deviating from the edge state and later returning to it—a phenomenon termed adiabatic equivalent evolution. The output mode is localized at the edge waveguide, as same as the adiabatic evolution. By analyzing the fidelity between output mode and eigen edge state, we demonstrate that adiabaticity can effectively regulate fidelity, achieving signal on/off at the edge waveguide. As structural length decreases, fidelity gradually declines and exhibits oscillating behavior. When fidelity approach 1, adiabatic equivalent evolution emerges. First-order perturbation approximation reveals that these oscillations stem from destructive interference between edge and bulk states, confirming their intrinsic origin in band interference. This mechanism enables eigen edge state output at shorter lengths than adiabatic requirements, offering a reliable approach to miniaturize devices. Furthermore, the fabrication tolerance is analyzed. Within the whole waveguides width deviation range of -35~+30nm (relative deviation range of -7~+6%), the transmission of edge waveguide is larger than 0.9 through the adiabatic equivalent evolution. This work analyses light-field evolution process and underlying physics for topological pumping in non-adiabatic regimes, supplements theoretical methods for analyzing non-adiabatic evolution, and provides strategies to achieve eigen edge state output at reduced lengths. This work provides feasible design principles for topological optical waveguide arrays, guiding the development of compact and robust on-chip photonic devices such as optical couplers and splitters, with broad application prospects in integrated photonics.
  • [1]

    Meng Y, Chen Y Z, Lu L H, Ding Y M, Cusano A, Fan J A, Hu Q M, Wang K Y, Xie Z W, Liu Z T, Yang Y M, Liu Q, Gong M L, Xiao Q R, Sun S L, Zhang M M, Yuan X C, Ni X J 2021Light Sci. Appl. 10 235

    [2]

    Xu H N, Dai D X, Shi Y C 2019Laser Photonics Rev. 13 1800349

    [3]

    Xu H N, Qin Y, Hu G L, Tsang H K 2023Laser Photonics Rev. 17 2200550

    [4]

    Shen B, Wang P, Polson R, Menon R 2015Nat. Photonics 9 378

    [5]

    Yu Z J, Xu H N, Liu D J, Li H, Shi Y C, Dai D X 2022J. Lightwave Technol. 40 1784

    [6]

    Zhang M, Buscaino B, Wang C, Shams-Ansari A, Reimer C, Zhu R R, Kahn J M, Lončar M 2019Nature 568 373

    [7]

    Wu H, Tan Y, Dai D X 2017Opt. Express 25 6069

    [8]

    Gan R F, Qi L, Ruan Z L, Liu J, Guo C J, Chen K X, Liu L 2022Opt. Lett. 47 5200

    [9]

    Lu L, Joannopoulos J D, Soljačić M 2014Nat. Photonics 8 821

    [10]

    Ozawa T, Price H M, Amo A, Goldman N, Hafezi M, Lu L, Rechtsman M C, Schuster D, Simon J, Zilberberg O, Carusotto I 2019Rev. Mod. Phys. 91 015006

    [11]

    Tang G J, He X T, Shi F L, Liu J W, Chen X D, Dong J W 2022Laser Photonics Rev. 16 2100300

    [12]

    Wang Z, Chong Y D, Joannopoulos J D, Soljačić M 2009Nature 461 772

    [13]

    Yablonovitch E 2009Nature 461 744

    [14]

    He X T, Liang E T, Yuan J J, Qiu H Y, Chen X D, Zhao F L, Dong J W 2019Nat. Commun. 10 872

    [15]

    Shalaev M I, Walasik W, Tsukernik A, Xu Y, Litchinitser N M 2019Nat. Nanotechnol. 14 31

    [16]

    Yang Y H, Yamagami Y, Yu X B, Pitchappa P, Webber J, Zhang B L, Fujita M, Nagatsuma T, Singh R 2020Nat. Photonics 14 446

    [17]

    Sun L, Zhang Y, He Y, Wang H W, Su Y K 2020Nanophotonics 9 1321

    [18]

    Mayer N, Ayuso D, Decleva P, Khokhlova M, Pisanty E, Ivanov M, Smirnova O 2024Nat. Photonics 18 1155

    [19]

    He X T, Li M Y, Qiu H Y, Ruan W S, Zhou L D, Liu L, Chen X D, Chen W J, Zhao F L, Dong J W 2021Photon. Res. 9 1423

    [20]

    Zeng Y Q, Chattopadhyay U, Zhu B F, Qiang B, Li J H, Jin Y H, Li L H, Davies A G, Linfield E H, Zhang B L, Chong Y D, Wang Q J 2020Nature 578 246

    [21]

    Dai T X, Ma A, Mao J, Ao Y T, Jia X Y, Zheng Y, Zhai C H, Yang Y, Li Z H, Tang B, Luo J, Zhang B L, Hu X Y, Gong Q H, Wang J W 2024Nat. Mater. 23 928

    [22]

    Thouless D J 1983Phys. Rev. B 27 6083

    [23]

    Citro R, Aidelsburger M 2023Nat. Rev. Phys. 5 87

    [24]

    Yuan T, Dai H N, Chen Y A 2023Acta Phys. Sin. 72 160302(in Chinese) [苑涛, 戴汉宁, 陈宇翱2023 72 160302]

    [25]

    Wang R Q, Li C, Li Y 2024Acta Opt. Sin. 44 1732012(in Chinese) [王睿琦, 李础, 李焱2024光学学报44 1732012]

    [26]

    Rice M J, Mele E J 1982Phys. Rev. Lett. 49 1455

    [27]

    Sun L, Wang H W, He Y, Zhang Y, Tang G J, He X T, Dong J W, Su Y K 2022Laser Photonics Rev. 16 2200354

    [28]

    Song W G, You O B, Sun J C, Wu S J, Chen C, Huang C Y, Qiu K, Zhu S N, Zhang S, Li T 2024Sci. Adv. 10 eadn5028

    [29]

    Wu S J, Song W G, Sun J C, Li J, Lin Z Y, Liu X Y, Zhu S N, Li T 2024Nat. Commun. 15 9805

    [30]

    Fedorova Z, Qiu H X, Linden S, Kroha J 2020Nat. Commun. 11 3758

    [31]

    Privitera L, Russomanno A, Citro R, Santoro G E 2018Phys. Rev. Lett. 120 106601

    [32]

    Liu X Y, Lin Z Y, Song W G, Sun J C, Huang C Y, Wu S J, Xiao X J, Xin H R, Zhu S N, Li T 2024Phys. Rev. Lett. 132 016601

    [33]

    Mei F, Chen G, Tian L, Zhu S L, Jia S T 2018Phys. Rev. A 98 012331

    [34]

    Qi L, Wang G L, Liu S T, Zhang S, Wang H F 2020Phys. Rev. A 102 022404

    [35]

    Martínez-Garaot S, Ruschhaupt A, Gillet J, Busch T, Muga J G 2015Phys. Rev. A 92 043406

  • [1] 刘雨熙, 周宇龙, 邵烁婷, 尉鹏飞, 梁奇锋, 王小同, 唐桧波, 况龙钰, 胡广月. 红外超连续辐射泵浦电光晶体产生的太赫兹辐射.  , doi: 10.7498/aps.74.20250212
    [2] 何霄, 肖小舟, 何滨, 薛平, 肖嘉莹. 基于光声泵浦成像的氧分压测量定量分析.  , doi: 10.7498/aps.72.20231041
    [3] 苑涛, 戴汉宁, 陈宇翱. 超冷原子动量光晶格中的非线性拓扑泵浦.  , doi: 10.7498/aps.72.20230740
    [4] 熊振宇, 蔡远文, 吴昊, 刘通, 刘政良, 任元. 环形泵浦激发下微腔激子极化激元的涡旋叠加态演化分析.  , doi: 10.7498/aps.70.20210971
    [5] 周建忠, 陈抱雪, 李家韡, 王关德, 浜中广见. 光波导脉冲耦合器研究.  , doi: 10.7498/aps.63.014211
    [6] 任春年, 史鹏, 刘凯, 李文东, 赵洁, 顾永建. 初态对光波导阵列中连续量子行走影响的研究.  , doi: 10.7498/aps.62.090301
    [7] 汪大林, 孙军强, 王 健. 基于周期极化反转铌酸锂光波导高速非归零码到归零码的转换.  , doi: 10.7498/aps.57.252
    [8] 宋 琦, 宋昌烈, 李成仁, 李淑凤, 李建勇. 纵向非均匀掺铒的光波导放大器特性数值模拟研究.  , doi: 10.7498/aps.54.1624
    [9] 赵建林, 李碧丽, 张 鹏, 杨德兴, 李振伟. 用光辐照法在SBN:Cr晶体中写入动态阵列平面光波导.  , doi: 10.7498/aps.53.2583
    [10] 吴重庆, 董 晖, 傅松年, 刘海涛. 任意坐标系下非圆正规光波导的一般解及应用.  , doi: 10.7498/aps.52.383
    [11] 佘卫龙, 余振新, 李荣基. 光折变“波导”诱失锁模ps激光脉冲自泵浦相位共轭.  , doi: 10.7498/aps.45.2010
    [12] 刘永贵, 钱宝良, 李传胪. 具有等离子体背景的电磁泵浦自由电子激光.  , doi: 10.7498/aps.44.409
    [13] 赵阳, 杨淑雯. Er3+掺杂光纤孤子放大器(Ⅱ)——最佳泵浦.  , doi: 10.7498/aps.43.1281
    [14] 郭旗, 任占梅, 廖常俊, 刘颂豪. 非中心对称介质构成的光波导中的孤子传输.  , doi: 10.7498/aps.41.1097
    [15] 王祖赓. 锂蒸气中双光子泵浦的六波、四波混频和受激辐射.  , doi: 10.7498/aps.39.76
    [16] 关信安, 赵智虹. 同步泵浦-被动锁模染料激光器的基本方程及其解.  , doi: 10.7498/aps.38.16
    [17] 鲍晓毅, 吴存恺. 相位对同步泵浦锁模染料激光系统参数的影响.  , doi: 10.7498/aps.37.851
    [18] 马锦秀, 徐至展. 激光等离子体拍频波加速器中泵浦倒空的消除.  , doi: 10.7498/aps.37.1652
    [19] 关信安, 赵智虹. 适用于CW同步泵浦染料激光器的锁模方程及其解.  , doi: 10.7498/aps.37.335
    [20] 王祖赓, 李敏. 光学泵浦的锂分子激光.  , doi: 10.7498/aps.37.1640
计量
  • 文章访问数:  240
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 上网日期:  2025-05-10

/

返回文章
返回
Baidu
map