搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

星载电子器件温控的系统多尺度分析

李心泽 唐桂华 汪子涵 冯建朝 张晓峰

引用本文:
Citation:

星载电子器件温控的系统多尺度分析

李心泽, 唐桂华, 汪子涵, 冯建朝, 张晓峰

System multi-scale analysis of temperature control for spaceborne electronic devices

Li Xin-Ze, Tang Gui-Hua, Wang Zi-Han, Feng Jian-Chao, Zhang Xiao-Feng
PDF
导出引用
  • 为提高星载电子器件热分析的模拟分辨率和精度以及被动热控装置的控温效果,本文建立系统多尺度模型获得不同尺度下卫星内部电子器件的温度场和热流信息。结果表明:系统多尺度模型在系统级尺度模拟精度与实际模型相对误差小于8%,并且可消耗较少的计算资源获得器件级尺度芯片微小结构的热信息。系统级模型可从宏观尺度评估星载被动热控材料的控温隔热性能,采用复合相变隔热材料可将载荷舱室温度波动幅值降至2.43 K,相比平台舱室温度波动幅值降低约69.43%,通过复合相变隔热材料隔热后的温度波动信号呈现向高频域部分转移的特征。通过多元回归分析选定需要进行重点隔热控温的舱室后,采用器件级简化模型得到不同热控装置布局下的温度场信息形成训练数据集,采用神经网络遗传算法在器件尺度预测被动热控装置的最佳安装位置并得到减小器件最高温度波动的热控布局方案,最高温度波动降低2.74 K。
    To improve the simulation resolution and accuracy in thermal analysis of spaceborne electronic devices and the temperature control performance of passive thermal control devices, a system multi-scale model was established to obtain the temperature field and heat flux of electronic devices inside the satellite at different scales as schematic in the below figure. The temperature fluctuation mechanism inside the satellite was analyzed at different physical scales. The thermal analysis resolution of spaceborne electronic equipment was improved, and a method to reduce the power fluctuation of spaceborne equipment was proposed based on the results of system multi-scale thermal analysis.
    The results show that the system multi-scale model presents an accuracy deviation below 8% from the actual model. However, the system multi-scale model saves 99.67% of the mesh generation time, which greatly improves the computation efficiency. The system multi-scale model can capture the thermal information of device-level chip microstructures with less computational cost. The system-level model can evaluate the temperature control and insulation performance of passive thermal control materials from a macroscale. The temperature fluctuation amplitude of the platform compartment was 7.95 K, while the temperature fluctuation amplitude of the load compartment was reduced to 2.43 K after the temperature control of the composite phase change insulation material, which was 69.43% lower than that of the platform compartment. Compared with traditional vacuum insulation panels, the composite phase change materials are more superior in controlling the temperature of the chamber and suppressing temperature fluctuations. The temperature fluctuation signal after insulation by the composite phase change insulation materials shows a characteristic of shifting to the high-frequency domain. After selecting the cabins that require key insulation and temperature control through multiple regression analysis, a simplified model at device level was employed to obtain temperature field under different thermal control device layouts as a training dataset. A neural network genetic algorithm was used to predict the optimal installation position of passive thermal control devices at the device scale and a thermal control layout scheme was obtained that reduces the maximum temperature fluctuation of the devices by 2.74 K. If the temperature uniformity coefficient is taken as the optimization goal, the temperature of each device on PCB board can be reduced to 14.39% of the average temperature of all devices through optimization.
  • [1]

    Zhang J L, Li Y Z, Zhao X, Zhou Y P, Wei R 2023 S/C. E. 32 53 (in Chinese) [张嘉麟, 李运泽, 赵欣, 周宇鹏, 魏然 2023 航天器工程 32 53]

    [2]

    Wang D B, Li A, Wu Q T, Zhang H R, Wang X L, Wang G H 2023 Cryog. Supercond. 51 37 (in Chinese) [王定标, 李昂, 吴淇涛, 张浩然, 王晓亮, 王光辉 2023 低温与超导 51 37]

    [3]

    Wu L M 2023 M. S. Dissertation (Xi’an: Chang’an University) (in Chinese) [吴利明 2023 硕士学位论文(西安:长安大学)]

    [4]

    Feng J C, Zhang X F, Liang H, Shi X J, He T, Cai Z M 2023 J. Astronaut. 44 132 (in Chinese) [冯建朝, 张晓峰, 梁鸿, 侍行剑, 何涛, 蔡志鸣 2023 宇航学报 44 132]

    [5]

    Mermer E, Ünal R. 2023 J Braz. Soc. Mech. Sci. Eng. 45, 160.

    [6]

    Hu Y X, Zhang L H, Gao Y, Wei R, Tan D Y, Duan H Z, Wang L J 2022 S/C. E. 31 1 (in Chinese) [胡越欣, 张立华, 高永, 魏然, 谭定银, 段会宗, 王丽娇 2022 航天器工程 31 1]

    [7]

    Chen L 2017 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese) [陈黎 2017 博士学位论文(西安:西安交通大学)]

    [8]

    Tao W Q 2009 Multiscale Numerical Simulation of Heat Transfer and Flow Problems: Methods and Applications (Beijing: China Science Publishing) p441 (in Chinese) [陶文铨 2009 传热与流动问题的多尺度数值模拟: 方法与应用(北京:科学出版社) p441]

    [9]

    Ding X K, Sun L J 2022 ANSYS Icepak 2020 Electronics Cooling: From Beginner to Master (Case Study) (Beijing: Publishing House of Electronics Industry) p25 (in Chinese) [丁学凯, 孙立军 2022 ANSYS Icepak 2020 电子散热从入门到精通(案例实战版)(北京:电子工业出版社) p25]

    [10]

    Yang S M, Tao W Q 2006 Heat transfer (Fifth Edition) (Beijing: Higher Education Press) p62 (in Chinese) [杨世铭, 陶文铨 2006 传热学(第五版)(北京:高等教育出版社) p62]

    [11]

    Liu H, Zhang X F, Feng J C, Zhu C, Cai Z M, Xu Y 2021 Chin. J. Space Sci. 41 337 (in Chinese) [刘红, 张晓峰, 冯建朝, 诸成, 蔡志鸣, 徐雨 2021 空间科学学报 41 337]

    [12]

    Wei C 2012 Ph. D. Dissertation (Xi’an: Xi’an Jiaotong University) (in Chinese) [魏超 2012 博士学位论文(西安:西安交通大学)]

    [13]

    Zhao X 2008 S/C. E. 17 57 (in Chinese) [赵欣 2008 航天器工程 17 57]

    [14]

    Wang Z H, He C B, Hu Y, Tang G H 2024 Sci. China: Technol. Sci. 67 2387

    [15]

    Hu H M, Du X Z, Yang L J, Yang Y P 2014 J. Chi Soc. P E. 34 216 (in Chinese) [胡和敏, 杜小泽, 杨立军, 杨勇平 2014 动力工程学报 34 216]

    [16]

    Shao X, Han H, Wang H, Ma J, Hu Y, Li C, Teng H, Chang G, Wang B, Wei Z 2023 Optics Express. 31 32813.

    [17]

    Tongji University Department of Mathematics 2017 Probability Theory and Mathematical Statistics (Fourth Edition) (Beijing: Posts & Telecommunications Press) p252 (in Chinese) [同济大学数学系 2017 概率论与数理统计(第四版)(北京:人民邮电出版社) p252]

    [18]

    Cheng M S 2016 M. S. Dissertation (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese) [程梅苏 2016 硕士学位论文(南京:南京航空航天大学)]

    [19]

    Huang M Z, Zhu H, Liu N A, Xie X D, Ma C, Zhang S R 2024 J. Eng. Thermophys. 45 588 (in Chinese) [黄梦真, 朱虹, 刘乃安, 谢小冬, 马超, 张首蕤 2024工程热 45 588]

    [20]

    Cho J W, Lee Y J, Kim J H, Hu R, Lee E, Kim S K 2023 ACS Nano 17 10442.

    [21]

    Xu Z M 2018 Ph. D. Dissertation (Anhui: University of Science and Technology of China) (in Chinese) [徐志明 2018 博士学位论文(安徽:中国科学技术大学)]

    [22]

    Zhu Z, Wang Z, Liu T, Luo X, Qiu C, Hu R 2023 Cell Rep. Phys. Sci. 4 101540.

    [23]

    Xia B, Chen H Y, Wang Y P, Pan J J, Bai W G, Chang W B, Ding Y W 2021 Acta Sci. Nat. Univ. Sunyatseni 60 138 (in Chinese) [夏冰, 陈厚源, 汪一萍, 潘加键, 白伟钢, 常文博, 丁延卫 2021中山大学学报 60 138]

    [24]

    Wang Y K 2015 ANSYS Icepak Electronics Cooling Fundamentals Tutorial (Beijing: National Defense Industry Press) p30 (in Chinese) [王永康 2015 ANSYS Icepak 电子散热基础教程(北京:国防工业出版社)p30]

    [25]

    Zhu W B 2023 M. S. Dissertation (Changchun: Changchun Institute of Optics, Fine Mechanicsand Physics, Chinese Academy of Sciences) (in Chinese) [朱文博 2023 硕士学位论文(长春:中国科学院长春光学精密机械与物理研究所)]

    [26]

    Li Y Z, Wei C F, Yuan L S, Wang J 2005 J. Beijing Univ. Aeronaut. Astronaut. 60 372 (in Chinese) [李运泽, 魏传锋, 袁领双, 王浚 2005 北京航空航天大学学报 60 372]

    [27]

    Yu Z H 2022 M. S. Dissertation (Harbin: Harbin Institute of Technology) (in Chinese) [余志豪 2022 硕士学位论文(哈尔滨:哈尔滨工业大学)]

  • [1] 王晨阳, 段倩倩, 周凯, 姚静, 苏敏, 傅意超, 纪俊羊, 洪鑫, 刘雪芹, 汪志勇. 基于遗传算法优化卷积长短记忆混合神经网络模型的光伏发电功率预测.  , doi: 10.7498/aps.69.20191935
    [2] 院琳, 杨雪松, 王秉中. 基于经验知识遗传算法优化的神经网络模型实现时间反演信道预测.  , doi: 10.7498/aps.68.20190327
    [3] 林飞飞, 曾喆昭. 不确定分数阶时滞混沌系统自适应神经网络同步控制.  , doi: 10.7498/aps.66.090504
    [4] 夏舸, 杨立, 寇蔚, 杜永成. 非均匀背景中任意柱状热斗篷的研究与设计.  , doi: 10.7498/aps.66.114401
    [5] 曾喆昭. 不确定混沌系统的径向基函数神经网络反馈补偿控制.  , doi: 10.7498/aps.62.030504
    [6] 缪志强, 王耀南. 基于径向小波神经网络的混沌系统鲁棒自适应反演控制.  , doi: 10.7498/aps.61.030503
    [7] 李华青, 廖晓峰, 黄宏宇. 基于神经网络和滑模控制的不确定混沌系统同步.  , doi: 10.7498/aps.60.020512
    [8] 张 敏, 胡寿松. 不确定时滞混沌系统的自适应动态神经网络控制.  , doi: 10.7498/aps.57.1431
    [9] 冯朝文, 蔡 理, 李 芹. 基于单电子器件的细胞神经网络实现及应用研究.  , doi: 10.7498/aps.57.2462
    [10] 牛培峰, 张 君, 关新平. 基于遗传算法的混沌系统二自由度比例-积分-微分控制研究.  , doi: 10.7498/aps.56.3759
    [11] 牛培峰, 张 君, 关新平. 基于遗传算法的统一混沌系统比例-积分-微分神经网络解耦控制研究.  , doi: 10.7498/aps.56.2493
    [12] 司马文霞, 刘 凡, 孙才新, 廖瑞金, 杨 庆. 基于改进的径向基函数神经网络的铁磁谐振系统混沌控制.  , doi: 10.7498/aps.55.5714
    [13] 于灵慧, 房建成. 混沌神经网络逆控制的同步及其在保密通信系统中的应用.  , doi: 10.7498/aps.54.4012
    [14] 王东风. 基于遗传算法的统一混沌系统比例-积分-微分控制.  , doi: 10.7498/aps.54.1495
    [15] 吴忠强, 奥顿, 刘坤. 基于遗传算法的混沌系统模糊控制.  , doi: 10.7498/aps.53.21
    [16] 刘 丁, 任海鹏, 孔志强. 基于径向基函数神经网络的未知模型混沌系统控制.  , doi: 10.7498/aps.52.531
    [17] 王耀南, 谭 文. 混沌系统的遗传神经网络控制.  , doi: 10.7498/aps.52.2723
    [18] 任海鹏, 刘丁. 混沌的模糊神经网络逆系统控制.  , doi: 10.7498/aps.51.982
    [19] 谭文, 王耀南, 刘祖润, 周少武. 非线性系统混沌运动的神经网络控制.  , doi: 10.7498/aps.51.2463
    [20] 何国光, 曹志彤. 混沌神经网络的控制.  , doi: 10.7498/aps.50.2103
计量
  • 文章访问数:  111
  • PDF下载量:  1
  • 被引次数: 0
出版历程
  • 上网日期:  2024-08-23

/

返回文章
返回
Baidu
map