搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分数阶衍射蜂窝晶格中带隙涡旋孤子的传输与控制

王娟芬 韦鑫 刘帅 杨玲珍 薛萍萍 樊林林

引用本文:
Citation:

分数阶衍射蜂窝晶格中带隙涡旋孤子的传输与控制

王娟芬, 韦鑫, 刘帅, 杨玲珍, 薛萍萍, 樊林林

Transmission and control of band gap vortex solitons in fractional-order diffraction honeycomb lattices

Wang Juan-Fen, Wei Xin, Liu Shuai, Yang Ling-Zhen, Xue Ping-Ping, Fan Lin-Lin
PDF
HTML
导出引用
  • 基于分数阶非线性薛定谔方程, 研究分数阶衍射效应下蜂窝晶格中带隙涡旋光孤子的存在性与传输特性. 首先采用平面波展开法得到蜂窝晶格能带结构, 其次在带隙结构中分别采用改进的平方算子迭代法、分步傅里叶法和傅里叶配置法研究含有蜂窝晶格势的分数阶非线性薛定谔方程中带隙涡旋孤子的模式及其传输特性. 研究结果发现带隙涡旋孤子的传输特性受$ {\mathrm{L}}\acute{{\mathrm{e}}}{\mathrm{v}}{\mathrm{y}} $指数和传播常数的影响. 在稳定区间, 带隙涡旋孤子可以稳定传输, 而在非稳定区间, 带隙涡旋孤子会随着传输距离的增加而逐渐汇聚, 失去环状结构演变为基孤子. 且$ {\mathrm{L}}\acute{{\mathrm{e}}}{\mathrm{v}}{\mathrm{y}} $指数越大, 带隙涡旋孤子能够稳定传输的距离越长, 功率越低. 此外, 相邻晶格同相位两个带隙涡旋孤子与旁瓣能量相叠加, 反相位两带隙涡旋孤子与旁瓣能量相抵消, 传输过程中逐渐失去环状结构, 演化为类偶极子模式, 且受方位角调制影响而周期性旋转. 在非相邻晶格处两带隙涡旋孤子, 由于旁瓣影响较小, 带隙涡旋孤子在传输过程中能较好地保持环状结构.
    In this paper, the existence and transmission characteristics of gap vortex optical solitons in a honeycomb lattice are investigated based on the fractional nonlinear Schrödinger equation. Firstly, the band-gap structure of honeycomb lattice is obtained by the plane wave expansion method. Then the gap vortex soliton modes and their transmission properties in the fractional nonlinear Schrödinger equation with the honeycomb lattice potential are investigated by the modified squared-operator method, the split-step Fourier method and the Fourier collocation method, respectively. The results show that the transmission of gap vortex solitons is influenced by the $ {\mathrm{L}}\acute{{\mathrm{e}}}{\mathrm{v}}{\mathrm{y}} $ index and the propagation constant. The stable transmission region of gap vortex soliton can be obtained through power graphs. In the stable region, the gap vortex soliton can transmit stably without being disturbed. However, in the unstable region, the gap vortex soliton will gradually lose ring structure and evolves into a fundamental soliton with the transmission distance increasing. And the larger the $ {\mathrm{L}}\acute{{\mathrm{e}}}{\mathrm{v}}{\mathrm{y}} $ index, the longer the stable transmission distance and the lower the power of the bandgap vortex soliton. When multiple vortex solitons transmit in the lattice, the interaction between them is influenced by the lattice position and phase. Two vortex solitons that are in phase and located at adjacent lattices, are superimposed with sidelobe energy, while two vortex solitonsthat are out of phase are cancelled with sidelobe energy. These vortex solitons will gradually lose ring structure and evolve into dipole modes in the transmission process. And they are periodic rotation under the azimuth angle modulating. When two vortex solitons located at non-adjacent lattice, vortex solitons can maintain a ring-shaped structure due to the small influence of sidelobes. When three gap vortex solitons are located at non-adjacent lattices, the solitons can also maintain their ring-like structures. However, when there are more than three gap vortex solitons, the intensity distribution of vortex solitons are uneven due to the sidelobe energy superimposed. These vortex solitons will form dipole modes and rotate under the azimuthal angle modulating in the transmission process. These results can offer theoretical guidance for transmitting and controlling the gap vortex solitons in the lattice.
      通信作者: 王娟芬, wangjuanfen@126.com
    • 基金项目: 国家自然科学基金(批准号: 61675144, 61975141)资助的课题.
      Corresponding author: Wang Juan-Fen, wangjuanfen@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61675144, 61975141).
    [1]

    廖秋雨, 胡恒洁, 陈懋薇, 石逸, 赵元, 花春波, 徐四六, 傅其栋, 叶芳伟, 周勤 2023 72 104202Google Scholar

    Liao Q Y, Hu H J, Chen M W, Shi Y, Zhao Y, Hua C B, Xu S L, Fu Q D, Ye F W, Zhou Q 2023 Acta Phys. Sin. 72 104202Google Scholar

    [2]

    Shao Z, Wang C, Wu K, Zhang H, Chen J 2019 Nanoscale Adv. 1 4190Google Scholar

    [3]

    Sheng-Chyan L, Varrazza R, Siyuan Y 2006 IEEE J. Sel. Top. Quantum Electron. 12 817Google Scholar

    [4]

    Sang Y, Wu X, Raja S S, Wang C Y, Li H, Ding Y, Liu D, Zhou J, Ahn H, Gwo S, Shi J 2018 Adv. Opt. Mater. 6 1701368Google Scholar

    [5]

    Laskin N 2002 Phys. Rev. E 66 056108Google Scholar

    [6]

    Laskin N 2000 Phys. Rev. E 62 3135Google Scholar

    [7]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [8]

    Wen J, Zhang Y, Xiao M 2013 Adv. Opt. Photonics 5 83Google Scholar

    [9]

    Rokhinson L P, Liu X, Furdyna J K 2012 Nat. Phys. 8 795Google Scholar

    [10]

    Olivar-Romero F, Rosas-Ortiz O 2016 J. Phys. Conf. Ser. 698 012025Google Scholar

    [11]

    Stickler B A 2013 Phys. Rev. E 88 012120Google Scholar

    [12]

    Longhi S 2015 Opt. Lett. 40 1117Google Scholar

    [13]

    Zhang Y, Zhong H, Belić M R, Ahmed N, Zhang Y, Xiao M 2016 Sci. Rep. 6 23645Google Scholar

    [14]

    Zhang A X, Zhang Y, Jiang Y F, Yu Z F, Cai L X, Xue J K 2020 Chin. Phys. B 29 010307Google Scholar

    [15]

    Zhang Y, Zhong H, Belić M R, Zhu Y, Zhong W, Zhang Y, Christodoulides D N, Xiao M 2016 Laser Photonics Rev. 10 526Google Scholar

    [16]

    Liu S, Zhang Y, Malomed B A, Karimi E 2023 Nat. Commun. 14 222Google Scholar

    [17]

    Zhang L, Li C, Zhong H, Xu C, Lei D, Li Y, Fan D 2016 Opt. Express 24 14406Google Scholar

    [18]

    He S, Zhou K, Malomed B A, Mihalache D, Zhang L, Tu J, Wu Y, Zhao J, Peng X, He Y, Zhou X, Deng D 2021 J. Opt. Soc. Am. B 38 3230Google Scholar

    [19]

    Zhang L, Zhang X, Wu H, Li C, Pierangeli D, Gao Y, Fan D 2019 Opt. Express 27 27936Google Scholar

    [20]

    Huang C, Dong L 2016 Opt. Lett. 41 5636Google Scholar

    [21]

    Zhu Y, Yang J, Li J, Hu L, Zhou Q 2022 Nonlinear Dyn. 109 1047Google Scholar

    [22]

    Huang C, Dong L 2019 Opt. Lett. 44 5438Google Scholar

    [23]

    Wu Z, Cao S, Che W, Yang F, Zhu X, He Y 2020 Results Phys. 19 103381Google Scholar

    [24]

    Wang J, Wu Q, Du C, Yang L, Xue P, Fan L 2023 Phys. Lett. A 471 128794Google Scholar

    [25]

    温嘉美, 薄文博, 温学坤, 戴朝卿 2023 72 100502Google Scholar

    Wen J M, Bo W B, Wen X K and Dai C Q 2023 Acta Phys. Sin. 72 100502Google Scholar

    [26]

    Zeng L, Zeng J 2020 Commun. Phys. 3 26Google Scholar

    [27]

    Paredes A, Salgueiro J R, Michinel H 2022 Physica D 437 133340Google Scholar

    [28]

    Yao X, Liu X 2018 Opt. Lett. 43 5749Google Scholar

    [29]

    Wang J, Jin Y, Gong X, Yang L, Chen J, Xue P 2022 Opt. Express 30 8199Google Scholar

    [30]

    Yao G, Li Y, Chen R P 2022 Photonics 9 249Google Scholar

    [31]

    Dong L, Huang C 2019 Nonlinear Dyn. 98 1019Google Scholar

    [32]

    Liu X, Zeng J 2024 Front. Phys. 19 42201Google Scholar

    [33]

    Malomed B A 2021 Photonics 8 353Google Scholar

    [34]

    Liu X, Malomed B A, Zeng J 2022 Adv. Theory Simul. 5 2100482Google Scholar

    [35]

    Zeng L, Zeng J 2019 Nonlinear Dyn. 98 985Google Scholar

    [36]

    Li L, Li H G, Ruan W, Leng F C, Luo X B 2020 J. Opt. Soc. Am. B 37 488Google Scholar

    [37]

    Liu X, Zeng J 2023 Photonics Res. 11 196Google Scholar

    [38]

    Peleg O, Bartal G, Freedman B, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 103901Google Scholar

    [39]

    黄学勤, 陈子亭 2015 64 184208Google Scholar

    Huang X Q, Chan C T 2015 Acta Phys. Sin. 64 184208Google Scholar

    [40]

    Bahat-Treidel O, Peleg O, Grobman M, Shapira N, Segev M, Pereg-Barnea T 2010 Phys. Rev. Lett. 104 063901Google Scholar

    [41]

    Ablowitz M J, Nixon S D, Zhu Y 2009 Phys. Rev. A 79 053830Google Scholar

    [42]

    Yang J 2010 Mathematical Modeling and Computation (Philadelphia: the Society for Industrial and Applied Mathematics) pp271–275, 377–380

    [43]

    Huang X, Tan W, Jiang T, Nan S, Bai Y, Fu X 2023 Opt. Commun. 527 128970Google Scholar

  • 图 1  (a)蜂窝晶格结构; (b)蜂窝晶格所对应的能带结构. 其中势深 $ {V_0} = 1 $, $ {A_1}(1.47, {\text{ }}1.65) $, $ {A_2}(1.75, {\text{ }}1.65) $, $ {B_1}(1.47, {\text{ }}1.76) $, $ {B_2}(1.6, {\text{ }}1.76) $, $ {B_3}(1.75, {\text{ }}1.76) $

    Fig. 1.  (a) Honeycomb lattice shape; (b) the corresponding band-gap structure. The potential depth is $ {V_0} = 1 $, $ {A_1}(1.47, {\text{ }}1.65) $, $ {A_2}(1.75, {\text{ }}1.65) $, $ {B_1}(1.47, {\text{ }}1.76) $, $ {B_2}(1.6, {\text{ }}1.76) $ , $ {B_3}(1.75, {\text{ }}1.76) $.

    图 2  初始输入涡旋光束的强度三维分布图(a)和俯视图(b), 以及相位分布图(c). 这里取参数$ A = 2 $, $ {r_0} = \sqrt 2 $, $ l = 1 $

    Fig. 2.  The 3D intensity distribution of initial input vortex beam (a) and corresponding top view (b), and phase distribution (c). The parameters are $ A = 2 $, $ {r_0} = \sqrt 2 $, $ l = 1 $

    图 3  当$ \alpha = 1.75 $时, 第一带隙中带隙涡旋孤子解及稳定性分析 (a)—(c)带隙涡旋孤子解; (d)—(f)在$ z = 100 $处输出带隙涡旋孤子; (g) 带隙涡旋孤子在蜂窝晶格x方向剖面中的传输演化图; (h) 线性稳定谱图. 其他参数同图2

    Fig. 3.  Gap vortex solitons and their stability in the first gap when $ \alpha = 1.75 $: (a)–(c) The gap vortex soliton solution; (d)–(f) the output gap vortex solitons at $ z = 100 $; (g) the transmission evolution of gap vortex soliton in the x-direction of honeycomb lattice; (h) the corresponding stable spectrum. The other parameters are the same as in Figure 2.

    图 4  当$ \alpha = 1.47 $时, 第一带隙中带隙涡旋孤子及稳定性分析 (a)—(c)带隙涡旋孤子解; (d)—(f)在$ z = 100 $处输出带隙涡旋孤子; (g) 带隙涡旋孤子传输动力学演化; (h) 线性稳定值谱图. 其他参数同图2

    Fig. 4.  Gap vortex solitons and their stability in the first gap when $ \alpha = 1.47 $: (a)–(c) The gap vortex soliton solution; (d)–(f) the output gap vortex solitons at $ z = 100 $; (g) the transmission evolution of gap vortex soliton in the x-direction of honeycomb lattice; (h) the corresponding stable spectrum. The other parameters are the same as in Figure 2.

    图 5  带隙涡旋孤子功率$ P $与$ {\mathrm{L}}\acute{{\mathrm{e}}}{\mathrm{v}}{\mathrm{y}} $指数$ \alpha $关系图 (a) 第一带隙的功率谱图; (b) 第二带隙的功率谱

    Fig. 5.  Power $ P $ of gap vortex soliton versus $ {\mathrm{L}}\acute{{\mathrm{e}}}{\mathrm{v}}{\mathrm{y}} $ index $ \alpha $: (a) The power spectrum of first band gap; (b) the power spectrum of second band gap.

    图 6  第二带隙中带隙涡旋孤子及稳定性分析 (a)—(c) 当$ \alpha = 1.75 $时, 输出带隙涡旋孤子图像; (d)—(f) 当$ \alpha = 1.47 $时, 输出带隙涡旋孤子图像; 其他参数同图2

    Fig. 6.  Gap vortex solitons and their stability in the second gap: (a)–(c) When $ \alpha = 1.75 $, the output of vortex soliton; (d)–(f) when $ \alpha = 1.47 $, the output of vortex soliton. The other parameters are the same as that in Figure 2.

    图 7  第二带隙中, 不同$ {\mathrm{L}}\acute{{\mathrm{e}}}{\mathrm{v}}{\mathrm{y}} $指数$ \alpha $下, 带隙涡旋孤子传输动力学演化图像 (a) $ \alpha = 1.75 $; (b) $ \alpha = 1.6 $; (c) $ \alpha = 1.47 $; 其他参数同图2

    Fig. 7.  Transmission evolution of gap vortex solitons in the second gap with different $ {\mathrm{L}}\acute{{\mathrm{e}}}{\mathrm{v}}{\mathrm{y}} $ indexs: (a) $ \alpha = 1.75 $; (b) $ \alpha = 1.6 $; (c) $ \alpha = 1.47 $. The other parameters are the same as that in Figure 2.

    图 8  当$ \alpha = 1.8 $ 时, 在第一带隙中, 相邻((a1)—(a5))与不相邻((b1)—(b5))晶格处两个同相位带隙涡旋孤子的传输特性. 其他参数同图2

    Fig. 8.  When $ \alpha = 1.8 $, the transmission characteristics of two gap vortex soliton with in-phase at adjacent lattices ((a1)–(a5)) and nonadjacent lattices ((b1)–(b5)) in the first gap. The other parameters are the same as that in Figure 2.

    图 9  当$ \alpha = 1.8 $ 时, 在第一带隙中, 相邻((a1)—(a5))与不相邻((b1)—(b5))晶格处两个相位相反的带隙涡旋孤子传输特性. 其他参数同图2

    Fig. 9.  When $ \alpha = 1.8 $, the transmission characteristics of two gap vortex soliton with out of phase at adjacent lattices ((a1)–(a5)) and nonadjacent lattices ((b1)–(b5)) in the first gap. The other parameters are the same as that in Figure 2.

    图 10  多个带隙涡旋孤子的输入($ z = 0 $)和输出($ z = 6 $)的光强分布图 (a1), (b1)三个带隙涡旋孤子; (a2), (b2) 四个带隙涡旋孤子; (a3), (b3) 五个带隙涡旋孤子; (a4), (b4) 六个带隙涡旋孤子; 其他参数同图2

    Fig. 10.  Intensity distributions of multiple gap vortex solitons at z = 0 and z = 6: (a1), (b1) Three gap vortex solitons; (a2), (b2) four gap vortex solitons; (a3), (b3) five gap vortex solitons; (a4), (b4) six gap vortex solitons. The other parameters are the same as that in Figure 2.

    Baidu
  • [1]

    廖秋雨, 胡恒洁, 陈懋薇, 石逸, 赵元, 花春波, 徐四六, 傅其栋, 叶芳伟, 周勤 2023 72 104202Google Scholar

    Liao Q Y, Hu H J, Chen M W, Shi Y, Zhao Y, Hua C B, Xu S L, Fu Q D, Ye F W, Zhou Q 2023 Acta Phys. Sin. 72 104202Google Scholar

    [2]

    Shao Z, Wang C, Wu K, Zhang H, Chen J 2019 Nanoscale Adv. 1 4190Google Scholar

    [3]

    Sheng-Chyan L, Varrazza R, Siyuan Y 2006 IEEE J. Sel. Top. Quantum Electron. 12 817Google Scholar

    [4]

    Sang Y, Wu X, Raja S S, Wang C Y, Li H, Ding Y, Liu D, Zhou J, Ahn H, Gwo S, Shi J 2018 Adv. Opt. Mater. 6 1701368Google Scholar

    [5]

    Laskin N 2002 Phys. Rev. E 66 056108Google Scholar

    [6]

    Laskin N 2000 Phys. Rev. E 62 3135Google Scholar

    [7]

    Laughlin R B 1983 Phys. Rev. Lett. 50 1395Google Scholar

    [8]

    Wen J, Zhang Y, Xiao M 2013 Adv. Opt. Photonics 5 83Google Scholar

    [9]

    Rokhinson L P, Liu X, Furdyna J K 2012 Nat. Phys. 8 795Google Scholar

    [10]

    Olivar-Romero F, Rosas-Ortiz O 2016 J. Phys. Conf. Ser. 698 012025Google Scholar

    [11]

    Stickler B A 2013 Phys. Rev. E 88 012120Google Scholar

    [12]

    Longhi S 2015 Opt. Lett. 40 1117Google Scholar

    [13]

    Zhang Y, Zhong H, Belić M R, Ahmed N, Zhang Y, Xiao M 2016 Sci. Rep. 6 23645Google Scholar

    [14]

    Zhang A X, Zhang Y, Jiang Y F, Yu Z F, Cai L X, Xue J K 2020 Chin. Phys. B 29 010307Google Scholar

    [15]

    Zhang Y, Zhong H, Belić M R, Zhu Y, Zhong W, Zhang Y, Christodoulides D N, Xiao M 2016 Laser Photonics Rev. 10 526Google Scholar

    [16]

    Liu S, Zhang Y, Malomed B A, Karimi E 2023 Nat. Commun. 14 222Google Scholar

    [17]

    Zhang L, Li C, Zhong H, Xu C, Lei D, Li Y, Fan D 2016 Opt. Express 24 14406Google Scholar

    [18]

    He S, Zhou K, Malomed B A, Mihalache D, Zhang L, Tu J, Wu Y, Zhao J, Peng X, He Y, Zhou X, Deng D 2021 J. Opt. Soc. Am. B 38 3230Google Scholar

    [19]

    Zhang L, Zhang X, Wu H, Li C, Pierangeli D, Gao Y, Fan D 2019 Opt. Express 27 27936Google Scholar

    [20]

    Huang C, Dong L 2016 Opt. Lett. 41 5636Google Scholar

    [21]

    Zhu Y, Yang J, Li J, Hu L, Zhou Q 2022 Nonlinear Dyn. 109 1047Google Scholar

    [22]

    Huang C, Dong L 2019 Opt. Lett. 44 5438Google Scholar

    [23]

    Wu Z, Cao S, Che W, Yang F, Zhu X, He Y 2020 Results Phys. 19 103381Google Scholar

    [24]

    Wang J, Wu Q, Du C, Yang L, Xue P, Fan L 2023 Phys. Lett. A 471 128794Google Scholar

    [25]

    温嘉美, 薄文博, 温学坤, 戴朝卿 2023 72 100502Google Scholar

    Wen J M, Bo W B, Wen X K and Dai C Q 2023 Acta Phys. Sin. 72 100502Google Scholar

    [26]

    Zeng L, Zeng J 2020 Commun. Phys. 3 26Google Scholar

    [27]

    Paredes A, Salgueiro J R, Michinel H 2022 Physica D 437 133340Google Scholar

    [28]

    Yao X, Liu X 2018 Opt. Lett. 43 5749Google Scholar

    [29]

    Wang J, Jin Y, Gong X, Yang L, Chen J, Xue P 2022 Opt. Express 30 8199Google Scholar

    [30]

    Yao G, Li Y, Chen R P 2022 Photonics 9 249Google Scholar

    [31]

    Dong L, Huang C 2019 Nonlinear Dyn. 98 1019Google Scholar

    [32]

    Liu X, Zeng J 2024 Front. Phys. 19 42201Google Scholar

    [33]

    Malomed B A 2021 Photonics 8 353Google Scholar

    [34]

    Liu X, Malomed B A, Zeng J 2022 Adv. Theory Simul. 5 2100482Google Scholar

    [35]

    Zeng L, Zeng J 2019 Nonlinear Dyn. 98 985Google Scholar

    [36]

    Li L, Li H G, Ruan W, Leng F C, Luo X B 2020 J. Opt. Soc. Am. B 37 488Google Scholar

    [37]

    Liu X, Zeng J 2023 Photonics Res. 11 196Google Scholar

    [38]

    Peleg O, Bartal G, Freedman B, Manela O, Segev M, Christodoulides D N 2007 Phys. Rev. Lett. 98 103901Google Scholar

    [39]

    黄学勤, 陈子亭 2015 64 184208Google Scholar

    Huang X Q, Chan C T 2015 Acta Phys. Sin. 64 184208Google Scholar

    [40]

    Bahat-Treidel O, Peleg O, Grobman M, Shapira N, Segev M, Pereg-Barnea T 2010 Phys. Rev. Lett. 104 063901Google Scholar

    [41]

    Ablowitz M J, Nixon S D, Zhu Y 2009 Phys. Rev. A 79 053830Google Scholar

    [42]

    Yang J 2010 Mathematical Modeling and Computation (Philadelphia: the Society for Industrial and Applied Mathematics) pp271–275, 377–380

    [43]

    Huang X, Tan W, Jiang T, Nan S, Bai Y, Fu X 2023 Opt. Commun. 527 128970Google Scholar

  • [1] 苑涛, 戴汉宁, 陈宇翱. 超冷原子动量光晶格中的非线性拓扑泵浦.  , 2023, 72(16): 160302. doi: 10.7498/aps.72.20230740
    [2] 李淑青, 杨光晔, 李禄. Hirota方程的怪波解及其传输特性研究.  , 2014, 63(10): 104215. doi: 10.7498/aps.63.104215
    [3] 马松华, 方建平. 扩展的(2+1)维浅水波方程的尖峰孤子解及其相互作用.  , 2012, 61(18): 180505. doi: 10.7498/aps.61.180505
    [4] 高星辉, 杨振军, 周罗红, 郑一周, 陆大全, 胡巍. 非局域程度对空间暗孤子相互作用的影响.  , 2011, 60(8): 084213. doi: 10.7498/aps.60.084213
    [5] 满达夫, 那仁满都拉. 具有能量输入/输出的固体层中孤立波的传播及相互作用特性.  , 2010, 59(1): 60-66. doi: 10.7498/aps.59.60
    [6] 马松华, 吴小红, 方建平, 郑春龙. (3+1)维Burgers系统的新精确解及其特殊孤子结构.  , 2008, 57(1): 11-17. doi: 10.7498/aps.57.11
    [7] 宗丰德, 张解放. 装载于外势场中的玻色-爱因斯坦凝聚N-孤子间的相互作用.  , 2008, 57(5): 2658-2668. doi: 10.7498/aps.57.2658
    [8] 曹龙贵, 陆大全, 胡 巍, 杨平保, 朱叶青, 郭 旗. 亚强非局域空间光孤子的相互作用.  , 2008, 57(10): 6365-6372. doi: 10.7498/aps.57.6365
    [9] 刘志明, 崔 田, 马琰铭, 刘冰冰, 邹广田. Nb2H 的电子结构和相互作用.  , 2007, 56(8): 4877-4883. doi: 10.7498/aps.56.4877
    [10] 刘 峰, 刘式达, 刘 刚, 刘式适. Lorenz方程中两种尺度的相互作用.  , 2007, 56(10): 5629-5634. doi: 10.7498/aps.56.5629
    [11] 江德生, 佘卫龙. 光伏孤子对向传播相互作用研究.  , 2007, 56(1): 245-251. doi: 10.7498/aps.56.245
    [12] 黎扬钢, 佘卫龙, 王红成. 光致异构聚合物中相互作用光学空间孤子对的垂直光调控.  , 2007, 56(4): 2229-2236. doi: 10.7498/aps.56.2229
    [13] 马松华, 强继业, 方建平. (2+1)维Boiti-Leon-Pempinelli系统的混沌行为及孤子间的相互作用.  , 2007, 56(2): 620-626. doi: 10.7498/aps.56.620
    [14] 黄晓菁, 何素贞, 吴晨旭. 金属纳米结构表面吸附的CO分子在外电场中的相互作用.  , 2006, 55(5): 2454-2458. doi: 10.7498/aps.55.2454
    [15] 门福殿. 弱磁场中弱相互作用费米气体的热力学性质.  , 2006, 55(4): 1622-1627. doi: 10.7498/aps.55.1622
    [16] 宋克慧. 利用Λ型原子与双模腔场的相互作用进行量子信息处理.  , 2005, 54(10): 4730-4735. doi: 10.7498/aps.54.4730
    [17] 江德生, 佘卫龙. 多个光伏空间亮孤子相互作用研究.  , 2005, 54(5): 2090-2095. doi: 10.7498/aps.54.2090
    [18] 江金环, 李子平. 基于全息聚焦机理空间光孤子的相互作用势函数.  , 2004, 53(9): 2991-2994. doi: 10.7498/aps.53.2991
    [19] 欧阳世根, 王晓生, 佘卫龙. 异色光伏孤子之间的相互作用.  , 2004, 53(3): 767-772. doi: 10.7498/aps.53.767
    [20] 江德生, 欧阳世根, 佘卫龙. 暗-暗与亮-暗光伏孤子相互作用.  , 2004, 53(11): 3777-3785. doi: 10.7498/aps.53.3777
计量
  • 文章访问数:  1848
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-12-22
  • 修回日期:  2024-02-07
  • 上网日期:  2024-02-28
  • 刊出日期:  2024-05-05

/

返回文章
返回
Baidu
map