- 
				光学成像是人类不可或缺的信息获取方式之一, 其在预警侦察、精确制导、交通运输和工业生产等军用和民用领域发挥着不可替代的作用. 在室外环境中, 由于背景光、杂散光和大气介质的影响, 光学成像的分辨率、信噪比和作用距离等受到限制. 近年来, 在光学、物理、信息论及计算机等多学科的交叉融合发展的支撑下, 新型光学成像技术不断涌现, 为发展远距离、大视场、高信息通量的室外光学成像带来新的契机. 关联成像作为新型主动成像技术之一, 具有高灵敏、抗干扰、信息并行获取等特点, 能够较好地应对室外光学成像中所面临的如远距离导致光功率急剧衰减、环境噪声干扰引起的低信噪比等问题, 并能在一定程度上减少散射、湍流等导致的图像模糊等问题, 是当前室外环境中光学成像的热门研究领域之一. 本文从光学成像原理出发, 分析室外环境中光学成像分辨率、信噪比、空间带宽积和成像距离的影响因素, 重点介绍和梳理室外关联成像在成像系统、信噪甄别技术和成像算法等方面的研究进展, 并浅析光学成像向更远距离、更广视场拓展的过程中需要研究的基础问题和待攻克的关键技术.Image, as a method of information acquisition, is indispensable for human beings, and it plays an irreplaceable role in military and civilian fields, such as detection and scouting, precision guidance, transportation, and industrial production. In the outdoor environment, the resolution, signal-to-noise ratio, and working distance of optical imaging are limited as result of the influence of background light, stray light, and atmospheric medium. In recent years, with the development of muti-discipline such as optics, physics, information theory, and computer science, the new optical imaging technologies continue to emerge, thus bringing new opportunities for outdoor optical imaging towards long-distance, large field of view and high information flux. As one of the new active imaging technologies, correlation imaging has the potential applications of robustness against turbulence and noise, and the possibility of beating the Rayleigh limit. It can deal with the problems better, such as sharp attenuation of optical power caused by long distances, detection of interference signals from environmental noise, and influence of turbulence. Based on the principle of optical imaging, this paper analyzes the factors affecting optical imaging, in terms of resolution, signal-to-noise ratio, spatial bandwidth product, and imaging distance under outdoor environment, focusing on the research progress of outdoor correlation imaging including imaging systems, signal-to-noise screening technology and imaging algorithm. In addition, we analyze the requirements of optical imaging for longer distances and broader field of view, and consider the fundamental problems and the key technologies.- 
													Keywords:
													
- quantum correlation imaging /
- quantum optics /
- outdoor environment /
- imaging system
 [1] Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett 121 114801  Google Scholar Google Scholar[2] 韩波, 梁雅琼 2020 69 175202  Google Scholar Google ScholarHan B, Liang Y Q 2020 Acta Phys. Sin. 69 175202  Google Scholar Google Scholar[3] Mackinnon A J, Patel P K, Town R P, Edwards M J, Phillips T, Lerner S C, Price D W, Hicks D, Key M H, Hatchett S, Wilks S C, Borghesi M, Romagnani L, Kar S, Toncian T, Pretzler G, Willi O, Koenig M, Martinolli E, Lepape S, Benuzzi-Mounaix A, Audebert P, Gauthier J C, King J, Snavely R, Freeman R R, Boehlly T 2004 Rev. Sci. Instrum. 75 3531  Google Scholar Google Scholar[4] Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett 97 045001  Google Scholar Google Scholar[5] 周天益 2019 68 055201  Google Scholar Google ScholarZhou T Y 2019 Acta Phys. Sin. 68 055201  Google Scholar Google Scholar[6] Benedetti M, Franceschini G, Azaro R, Massa A 2007 IEEE Antenn. Wirel. Pr. 6 271  Google Scholar Google Scholar[7] Palmeri R, Bevacqua M T, Crocco L, Isernia T, Di Donato L 2017 IEEE T. Antenn. Propag. 65 829  Google Scholar Google Scholar[8] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松 2017 66 088701  Google Scholar Google ScholarDai B, Wang P, Zhou Y, You C W, Hu J S, Yang Z G, Wang K J, Liu JS 2017 Acta Phys. Sin. 66 088701  Google Scholar Google Scholar[9] Cao B H, Zhang M Y, Fan M B, Sun F S, Liu L 2022 Chin. Opt. 15 405  Google Scholar Google Scholar[10] Ding Li, Ding Xi, Ye Y Y, Zhu Y M 2017 Chin. Opt. 10 114  Google Scholar Google Scholar[11] Saumya T, Kianoush F, Georgina C, Rohit B 2022 Appl. Spectrosc. 76 475  Google Scholar Google Scholar[12] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国 2020 69 096801  Google Scholar Google ScholarLü H C, Zhao Y C, Yang G, Dong B W, Qi J, Zhang J Y, Zhu Z Z, Sun Y, Yu G H, Jiang Y, Wei H X, Wang J, Lu J, Wang Z H, Cai J W, Shen B G, Yang F, Zhang S J, Wang S G 2020 Acta Phys. Sin. 69 096801  Google Scholar Google Scholar[13] Vaithilingam S, Ma T J, Furukawa Y, Wygant I O, Zhuang X, De La Zerda A, Oralkan O, Kamaya A, Gambhir S, Jeffrey R, Khuri-yakub B 2009 IEEE T. Ultrason. Ferr. 56 2411  Google Scholar Google Scholar[14] Tan Y, Xia K Y, Ren Q S, Li C H 2017 Opt. Express 25 8022  Google Scholar Google Scholar[15] Li J H, Zhang F Z, Xiang Y, Pan S L 2021 Opt. Express 29 31574  Google Scholar Google Scholar[16] Li S M, Cui Z Z, Ye X W, Feng J, Yang Y, He Z Q, Cong R, Zhu D, Zhang F Z, Pan S L 2020 Laser Photonics Rev. 14 1900239  Google Scholar Google Scholar[17] Lord Rayleigh Sec. R S 1896 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42 167  Google Scholar Google Scholar[18] Abbe E 1873 Archiv für Mikroskopische Anatomie 9 413  Google Scholar Google Scholar[19] Zuo C, Chen Q 2022 Chin. Opt. 15 1105  Google Scholar Google Scholar[20] Jicha O, Pechac P, Stanislav Z, Grabner M, Kvicera V 2012 Proceed. SPIE 8535 853509  Google Scholar Google Scholar[21] Ronald R P, Richard J S 1994 J. Opt. Soc. Am. A 11 288  Google Scholar Google Scholar[22] Darryl P G 1977 J. Opt. Soc. Am. 67 390  Google Scholar Google Scholar[23] Hanbury Brown R, Twiss R Q 1956 Nature 177 27  Google Scholar Google Scholar[24] Klyshko D N 1988 Sov. Phys. Usp 31 74  Google Scholar Google Scholar[25] Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429  Google Scholar Google Scholar[26] Gatti A, Brambilla E, Lugiato L A 2003 Phys. Rev. Lett 90 133603  Google Scholar Google Scholar[27] Khakimov R I, Henson B M, Shin D K, Hodgman S S, Dall R G, Baldwin K G H, Truscott A G 2016 Nature 540 100  Google Scholar Google Scholar[28] Shapiro J H 2008 Phys. Rev. A 78 061802  Google Scholar Google Scholar[29] Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603  Google Scholar Google Scholar[30] Sun B Q, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892  Google Scholar Google Scholar[31] Gao Z Q, Cheng X M, Zhang L, Hu Y, Hao Q 2020 J. Opt. 22 055704  Google Scholar Google Scholar[32] Huo Y, He H, Chen F 2016 Appl. Opt. 55 3356  Google Scholar Google Scholar[33] Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203  Google Scholar Google Scholar[34] Lyu M, Wang W, Li G W, Zheng S S, Situ G H 2017 Sci. Rep. 7 17865  Google Scholar Google Scholar[35] Wang F, Wang C L, Chen M L, Gong W L, Zhang Y, Han S S, Situ G H 2022 Light-Sci. Appl. 11 1  Google Scholar Google Scholar[36] Zhai X, Cheng Z D, Hu Y D, Chen Y, Liang Z Y, Wei Y 2019 Opt. Commun. 448 69  Google Scholar Google Scholar[37] Sun S, Gu J H, Lin H Z, Jiang L, Liu W T 2019 Opt. Lett. 44 5594  Google Scholar Google Scholar[38] Wang Z H, Sun Y L, Liao J L, Wang C, Cao R, Jin L, Cao C Q 2021 Opt. Express 29 39342  Google Scholar Google Scholar[39] Yang D Y, Chang C, Wu G H, Luo B, Yin L F 2020 Appl. Sci. 10 7941  Google Scholar Google Scholar[40] Zha L B, Shi D F, Huang J, Yuan K, Meng W W, Yang W, Jiang R B, Chen Y F, Wang Y J 2021 Opt. Express 29 30327  Google Scholar Google Scholar[41] Du L K, Sun S, Jiang L, Chang C, Lin H Z, Liu W T 2023 Phys. Rev. Appl. 19 054014  Google Scholar Google Scholar[42] Gong W L, Zhao C Q, Yu H, Chen M L, Xu W D, Han S S 2016 Sci. Rep. 6 26133  Google Scholar Google Scholar[43] Deng C J, Gong W L, Han S S 2016 Opt. Express 24 25983  Google Scholar Google Scholar[44] Deng C J, Pan L, Wang C L, Gao X, Gong W L, Han S S 2017 Photon. Res. 5 431  Google Scholar Google Scholar[45] Sun M J, Edgar M P, Gibson G M, Sun B Q, Near L, Miles J. P 2016 Nat. Commun 7 12010  Google Scholar Google Scholar[46] Rai T, Hashim F H, Huddin A B, Lbrahim M F, Hussain A 2020 Electronics 9 741  Google Scholar Google Scholar[47] Xu Z H, Chen W, Penuelas J, Padgett Miles, Sun M J 2018 Opt. Express 26 2427  Google Scholar Google Scholar[48] Wang W Q, Zhang W F, Sai T. C, Brent E. L, Yang Q H, Wang L R, Hu X H, Wang L, Wang G X, Wang Y S, Zhao W 2017 ACS Photonics 4 1677  Google Scholar Google Scholar[49] Nitta K. Yano Y, Kitada C. Matoba O 2019 Appl. Sci 9 4807  Google Scholar Google Scholar[50] Yusuke K, Kento K, Rui T, Yasuyuki O, Yoshiaki N, and Takuo T 2019 Opt. Express 27 3817  Google Scholar Google Scholar[51] Cheng J 2009 Opt. Express 17 7916  Google Scholar Google Scholar[52] Li C, Wang T, Pu J, Zhu W, Rao R 2010 Appl. Phys. B 99 599  Google Scholar Google Scholar[53] Zhang P L, Gong W L, Shen X, Han S S 2010 Phys. Rev. A 82 033817  Google Scholar Google Scholar[54] Chen M L, Li E R, Gong W L, Bo Z W, Xu X Y, Zhao C Q, Shen X, Xu W D, Han S S 2013 Opt. Photonics J. 3 83  Google Scholar Google Scholar[55] Meyers R E, Deacon K S, Shih Y 2023 Appl. Phys. Lett. 122 014001.  Google Scholar Google Scholar[56] Gong W L, Han S S 2011 Opt. Lett. 36 394  Google Scholar Google Scholar[57] Hardy N D, Shapiro J H 2011 Phys. Rev. A 84 063824  Google Scholar Google Scholar[58] Xu Y K, Liu W T, Zhang E F, Li Q, Dai H Y, Chen P X 2015 Opt. Express 23 32993  Google Scholar Google Scholar[59] Meyers R E, Deacon K S, Tunick A D 2012 Appl. Phys. Lett. 100 061126  Google Scholar Google Scholar[60] Gao Z, Yin J, Bai Y, Fu X 2020 Appl. Opt. 59 8472  Google Scholar Google Scholar[61] Shi D F, Fan C Y, Zhang P F, Zhang J H, Shen H, Qiao C H, Wang Y J 2012 Opt. Express 20 27992  Google Scholar Google Scholar[62] Li Y Z, Deng C J, Gong W L, Han S S 2021 Acta Opt. Sin. 41 1511004  Google Scholar Google Scholar[63] Yuan Y, Chen H 2022 New J. Phys. 24 043034  Google Scholar Google Scholar[64] Lin L X, Cao J, Zhou D, Cui H, Hao Q 2022 Opt. Express 30 11243  Google Scholar Google Scholar[65] Sun S, Nie Z W, Li Y G, Lin H Z, Liu W T, Chen P X 2022 arXiv: 2208.08644v3 [66] Li D, Yang D, Sun S, Li Y G, Jiang L, Lin H Z, Liu W T 2021 Opt. Express 29 31068  Google Scholar Google Scholar[67] Guan J, Cheng Y, Chang G 2017 Opt. Commun 391 82  Google Scholar Google Scholar[68] Sun S, Liu W T, Gu J H, Lin H Z, Jiang L, Xu Y K, Chen P X 2019 Opt. Lett. 44 5993  Google Scholar Google Scholar[69] Gong W L 2015 Photonics Res. 3 234  Google Scholar Google Scholar[70] Zhang C, Guo S X, Cao J S, Guan J, Gao F L 2014 Opt. Express 22 30063  Google Scholar Google Scholar[71] Katz O, Bromberg Y, Silberberg Y 2009 App. Phys. Lett 95 131110.  Google Scholar Google Scholar[72] Zhang X, Meng X F, Yang X L, Wang Y R, Yin Y K, Li X Y, Peng X, He W H, Dong G Y, Chen H Y 2018 Opt. Express 26 12948  Google Scholar Google Scholar[73] 白旭, 李永强, 赵生妹 2013 62 044209  Google Scholar Google ScholarBai X, Li Y Q, Zhao S M 2013 Acta Phys. Sin. 62 044209  Google Scholar Google Scholar[74] Shimobaba T, Endo Y, Nishitsuji T, Takahashi T, Nagahama Y, Hasegawa S, Sano M, Hirayama R, Kakue T, Shiraki A, Ito T 2018 Opt. Commun. 413 147  Google Scholar Google Scholar[75] Higham C F, Murray-Smith R, Padgett M J, Edgar M P 2018 Sci. Rep. 8 2369  Google Scholar Google Scholar
- 
				
    
    
    
    图 7 不同天气条件下直接成像与关联成像图像对比, 其中(a)—(e)分别代表晴朗、多云、小雨、中雾、夜晚天气对应; (1)—(4)分别对应实地场景、传统成像、关联成像、基于总变分约束的关联成像[54] Fig. 7. Comparison of images between two imaging method in different weather: (a) Clear; (b) cloudy; (c) light rain; (d) moderately foggy; (e) night. Where (1) scenes of field experimental, (2) traditional imaging, (3) ghost imaging, (4) ghost imaging by TV (total variation)[54] 图 8 双缝直接成像与关联成像结果, 从(a)到(f)对应散射强度逐渐增加, β= 100%, 33.26%, 12.14%, 6.44%, 3.16%, 1.28%, $ \beta $ 表示散射介质的透过率, 每一对图像的左图为关联成像结果, 右图为传统直接成像结果[58]Fig. 8. Imaging results of a double slit achieved with both methods. From set (a) to (f), the strength of scattering is increasing, β = 100%, 33.26%, 12.14%, 6.44%, 3.16%, 1.28%, where $ \beta $ shows the transmission ratio of the scattering media as a measure of strength of scattering. For each set, the left one is the result of ghost imaging and the right one is that of traditional non-correlated imaging[58].图 9 字母“A”在不同强度大气湍流下的图像 (a)—(c)湍流系数分别为2.0, 3.2, 6.8时常规关联成像图像; (d)—(f)湍流系数为2.0, 3.2, 6.8时自适应关联成像图像[61] Fig. 9. Obtained images of letter “A” under different strength atmospheric turbulence: (a)–(c) Images of convention ghost imaging at turbulence coefficient of 2.0, 3.2 and 6.8, respectively; (d)–(f) images of adaptive optical ghost imaging at turbulence coefficient 2.0, 3.2 and 6.8, respectively[61]. 
- 
				
[1] Li S, Cropp F, Kabra K, Lane T J, Wetzstein G, Musumeci P, Ratner D 2018 Phys. Rev. Lett 121 114801  Google Scholar Google Scholar[2] 韩波, 梁雅琼 2020 69 175202  Google Scholar Google ScholarHan B, Liang Y Q 2020 Acta Phys. Sin. 69 175202  Google Scholar Google Scholar[3] Mackinnon A J, Patel P K, Town R P, Edwards M J, Phillips T, Lerner S C, Price D W, Hicks D, Key M H, Hatchett S, Wilks S C, Borghesi M, Romagnani L, Kar S, Toncian T, Pretzler G, Willi O, Koenig M, Martinolli E, Lepape S, Benuzzi-Mounaix A, Audebert P, Gauthier J C, King J, Snavely R, Freeman R R, Boehlly T 2004 Rev. Sci. Instrum. 75 3531  Google Scholar Google Scholar[4] Mackinnon A J, Patel P K, Borghesi M, Clarke R C, Freeman R R, Habara H, Hatchett S P, Hey D, Hicks D G, Kar S, Key M H, King J A, Lancaster K, Neely D, Nikkro A, Norreys P A, Notley M M, Phillips T W, Romagnani L, Snavely R A, Stephens R B, Town R P J 2006 Phys. Rev. Lett 97 045001  Google Scholar Google Scholar[5] 周天益 2019 68 055201  Google Scholar Google ScholarZhou T Y 2019 Acta Phys. Sin. 68 055201  Google Scholar Google Scholar[6] Benedetti M, Franceschini G, Azaro R, Massa A 2007 IEEE Antenn. Wirel. Pr. 6 271  Google Scholar Google Scholar[7] Palmeri R, Bevacqua M T, Crocco L, Isernia T, Di Donato L 2017 IEEE T. Antenn. Propag. 65 829  Google Scholar Google Scholar[8] 代冰, 王朋, 周宇, 游承武, 胡江胜, 杨振刚, 王可嘉, 刘劲松 2017 66 088701  Google Scholar Google ScholarDai B, Wang P, Zhou Y, You C W, Hu J S, Yang Z G, Wang K J, Liu JS 2017 Acta Phys. Sin. 66 088701  Google Scholar Google Scholar[9] Cao B H, Zhang M Y, Fan M B, Sun F S, Liu L 2022 Chin. Opt. 15 405  Google Scholar Google Scholar[10] Ding Li, Ding Xi, Ye Y Y, Zhu Y M 2017 Chin. Opt. 10 114  Google Scholar Google Scholar[11] Saumya T, Kianoush F, Georgina C, Rohit B 2022 Appl. Spectrosc. 76 475  Google Scholar Google Scholar[12] 吕浩昌, 赵云驰, 杨光, 董博闻, 祁杰, 张静言, 朱照照, 孙阳, 于广华, 姜勇, 魏红祥, 王晶, 陆俊, 王志宏, 蔡建旺, 沈保根, 杨峰, 张申金, 王守国 2020 69 096801  Google Scholar Google ScholarLü H C, Zhao Y C, Yang G, Dong B W, Qi J, Zhang J Y, Zhu Z Z, Sun Y, Yu G H, Jiang Y, Wei H X, Wang J, Lu J, Wang Z H, Cai J W, Shen B G, Yang F, Zhang S J, Wang S G 2020 Acta Phys. Sin. 69 096801  Google Scholar Google Scholar[13] Vaithilingam S, Ma T J, Furukawa Y, Wygant I O, Zhuang X, De La Zerda A, Oralkan O, Kamaya A, Gambhir S, Jeffrey R, Khuri-yakub B 2009 IEEE T. Ultrason. Ferr. 56 2411  Google Scholar Google Scholar[14] Tan Y, Xia K Y, Ren Q S, Li C H 2017 Opt. Express 25 8022  Google Scholar Google Scholar[15] Li J H, Zhang F Z, Xiang Y, Pan S L 2021 Opt. Express 29 31574  Google Scholar Google Scholar[16] Li S M, Cui Z Z, Ye X W, Feng J, Yang Y, He Z Q, Cong R, Zhu D, Zhang F Z, Pan S L 2020 Laser Photonics Rev. 14 1900239  Google Scholar Google Scholar[17] Lord Rayleigh Sec. R S 1896 The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 42 167  Google Scholar Google Scholar[18] Abbe E 1873 Archiv für Mikroskopische Anatomie 9 413  Google Scholar Google Scholar[19] Zuo C, Chen Q 2022 Chin. Opt. 15 1105  Google Scholar Google Scholar[20] Jicha O, Pechac P, Stanislav Z, Grabner M, Kvicera V 2012 Proceed. SPIE 8535 853509  Google Scholar Google Scholar[21] Ronald R P, Richard J S 1994 J. Opt. Soc. Am. A 11 288  Google Scholar Google Scholar[22] Darryl P G 1977 J. Opt. Soc. Am. 67 390  Google Scholar Google Scholar[23] Hanbury Brown R, Twiss R Q 1956 Nature 177 27  Google Scholar Google Scholar[24] Klyshko D N 1988 Sov. Phys. Usp 31 74  Google Scholar Google Scholar[25] Pittman T B, Shih Y H, Strekalov D V, Sergienko A V 1995 Phys. Rev. A 52 R3429  Google Scholar Google Scholar[26] Gatti A, Brambilla E, Lugiato L A 2003 Phys. Rev. Lett 90 133603  Google Scholar Google Scholar[27] Khakimov R I, Henson B M, Shin D K, Hodgman S S, Dall R G, Baldwin K G H, Truscott A G 2016 Nature 540 100  Google Scholar Google Scholar[28] Shapiro J H 2008 Phys. Rev. A 78 061802  Google Scholar Google Scholar[29] Ferri F, Magatti D, Lugiato L A, Gatti A 2010 Phys. Rev. Lett. 104 253603  Google Scholar Google Scholar[30] Sun B Q, Welsh S S, Edgar M P, Shapiro J H, Padgett M J 2012 Opt. Express 20 16892  Google Scholar Google Scholar[31] Gao Z Q, Cheng X M, Zhang L, Hu Y, Hao Q 2020 J. Opt. 22 055704  Google Scholar Google Scholar[32] Huo Y, He H, Chen F 2016 Appl. Opt. 55 3356  Google Scholar Google Scholar[33] Zhao S M, Zhuang P 2014 Chin. Phys. B 23 054203  Google Scholar Google Scholar[34] Lyu M, Wang W, Li G W, Zheng S S, Situ G H 2017 Sci. Rep. 7 17865  Google Scholar Google Scholar[35] Wang F, Wang C L, Chen M L, Gong W L, Zhang Y, Han S S, Situ G H 2022 Light-Sci. Appl. 11 1  Google Scholar Google Scholar[36] Zhai X, Cheng Z D, Hu Y D, Chen Y, Liang Z Y, Wei Y 2019 Opt. Commun. 448 69  Google Scholar Google Scholar[37] Sun S, Gu J H, Lin H Z, Jiang L, Liu W T 2019 Opt. Lett. 44 5594  Google Scholar Google Scholar[38] Wang Z H, Sun Y L, Liao J L, Wang C, Cao R, Jin L, Cao C Q 2021 Opt. Express 29 39342  Google Scholar Google Scholar[39] Yang D Y, Chang C, Wu G H, Luo B, Yin L F 2020 Appl. Sci. 10 7941  Google Scholar Google Scholar[40] Zha L B, Shi D F, Huang J, Yuan K, Meng W W, Yang W, Jiang R B, Chen Y F, Wang Y J 2021 Opt. Express 29 30327  Google Scholar Google Scholar[41] Du L K, Sun S, Jiang L, Chang C, Lin H Z, Liu W T 2023 Phys. Rev. Appl. 19 054014  Google Scholar Google Scholar[42] Gong W L, Zhao C Q, Yu H, Chen M L, Xu W D, Han S S 2016 Sci. Rep. 6 26133  Google Scholar Google Scholar[43] Deng C J, Gong W L, Han S S 2016 Opt. Express 24 25983  Google Scholar Google Scholar[44] Deng C J, Pan L, Wang C L, Gao X, Gong W L, Han S S 2017 Photon. Res. 5 431  Google Scholar Google Scholar[45] Sun M J, Edgar M P, Gibson G M, Sun B Q, Near L, Miles J. P 2016 Nat. Commun 7 12010  Google Scholar Google Scholar[46] Rai T, Hashim F H, Huddin A B, Lbrahim M F, Hussain A 2020 Electronics 9 741  Google Scholar Google Scholar[47] Xu Z H, Chen W, Penuelas J, Padgett Miles, Sun M J 2018 Opt. Express 26 2427  Google Scholar Google Scholar[48] Wang W Q, Zhang W F, Sai T. C, Brent E. L, Yang Q H, Wang L R, Hu X H, Wang L, Wang G X, Wang Y S, Zhao W 2017 ACS Photonics 4 1677  Google Scholar Google Scholar[49] Nitta K. Yano Y, Kitada C. Matoba O 2019 Appl. Sci 9 4807  Google Scholar Google Scholar[50] Yusuke K, Kento K, Rui T, Yasuyuki O, Yoshiaki N, and Takuo T 2019 Opt. Express 27 3817  Google Scholar Google Scholar[51] Cheng J 2009 Opt. Express 17 7916  Google Scholar Google Scholar[52] Li C, Wang T, Pu J, Zhu W, Rao R 2010 Appl. Phys. B 99 599  Google Scholar Google Scholar[53] Zhang P L, Gong W L, Shen X, Han S S 2010 Phys. Rev. A 82 033817  Google Scholar Google Scholar[54] Chen M L, Li E R, Gong W L, Bo Z W, Xu X Y, Zhao C Q, Shen X, Xu W D, Han S S 2013 Opt. Photonics J. 3 83  Google Scholar Google Scholar[55] Meyers R E, Deacon K S, Shih Y 2023 Appl. Phys. Lett. 122 014001.  Google Scholar Google Scholar[56] Gong W L, Han S S 2011 Opt. Lett. 36 394  Google Scholar Google Scholar[57] Hardy N D, Shapiro J H 2011 Phys. Rev. A 84 063824  Google Scholar Google Scholar[58] Xu Y K, Liu W T, Zhang E F, Li Q, Dai H Y, Chen P X 2015 Opt. Express 23 32993  Google Scholar Google Scholar[59] Meyers R E, Deacon K S, Tunick A D 2012 Appl. Phys. Lett. 100 061126  Google Scholar Google Scholar[60] Gao Z, Yin J, Bai Y, Fu X 2020 Appl. Opt. 59 8472  Google Scholar Google Scholar[61] Shi D F, Fan C Y, Zhang P F, Zhang J H, Shen H, Qiao C H, Wang Y J 2012 Opt. Express 20 27992  Google Scholar Google Scholar[62] Li Y Z, Deng C J, Gong W L, Han S S 2021 Acta Opt. Sin. 41 1511004  Google Scholar Google Scholar[63] Yuan Y, Chen H 2022 New J. Phys. 24 043034  Google Scholar Google Scholar[64] Lin L X, Cao J, Zhou D, Cui H, Hao Q 2022 Opt. Express 30 11243  Google Scholar Google Scholar[65] Sun S, Nie Z W, Li Y G, Lin H Z, Liu W T, Chen P X 2022 arXiv: 2208.08644v3 [66] Li D, Yang D, Sun S, Li Y G, Jiang L, Lin H Z, Liu W T 2021 Opt. Express 29 31068  Google Scholar Google Scholar[67] Guan J, Cheng Y, Chang G 2017 Opt. Commun 391 82  Google Scholar Google Scholar[68] Sun S, Liu W T, Gu J H, Lin H Z, Jiang L, Xu Y K, Chen P X 2019 Opt. Lett. 44 5993  Google Scholar Google Scholar[69] Gong W L 2015 Photonics Res. 3 234  Google Scholar Google Scholar[70] Zhang C, Guo S X, Cao J S, Guan J, Gao F L 2014 Opt. Express 22 30063  Google Scholar Google Scholar[71] Katz O, Bromberg Y, Silberberg Y 2009 App. Phys. Lett 95 131110.  Google Scholar Google Scholar[72] Zhang X, Meng X F, Yang X L, Wang Y R, Yin Y K, Li X Y, Peng X, He W H, Dong G Y, Chen H Y 2018 Opt. Express 26 12948  Google Scholar Google Scholar[73] 白旭, 李永强, 赵生妹 2013 62 044209  Google Scholar Google ScholarBai X, Li Y Q, Zhao S M 2013 Acta Phys. Sin. 62 044209  Google Scholar Google Scholar[74] Shimobaba T, Endo Y, Nishitsuji T, Takahashi T, Nagahama Y, Hasegawa S, Sano M, Hirayama R, Kakue T, Shiraki A, Ito T 2018 Opt. Commun. 413 147  Google Scholar Google Scholar[75] Higham C F, Murray-Smith R, Padgett M J, Edgar M P 2018 Sci. Rep. 8 2369  Google Scholar Google Scholar
计量
- 文章访问数: 8653
- PDF下载量: 196
- 被引次数: 0


 
					 
		         
	         
  
					 
										





 
							 下载:
下载: 
				 
							 
							 
							 
							 
							 
							 
							

 
							 
							 
							 
							 
							 
							 
							