搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

块状和超薄磁性材料中巨大且可调控的面内自旋角位移

李乾阳 袁帅杰 杨锦 王勇 马祖海 陈宇 周新星

引用本文:
Citation:

块状和超薄磁性材料中巨大且可调控的面内自旋角位移

李乾阳, 袁帅杰, 杨锦, 王勇, 马祖海, 陈宇, 周新星

Giant and controllable in-plane spin angular shifts in bulk and ultrathin magnetic materials

Li Qian-Yang, Yuan Shuai-Jie, Yang Jin, Wang Yong, Ma Zu-Hai, Chen Yu, Zhou Xin-Xing
PDF
导出引用
  • 磁光克尔效应是指处于磁场中的光束在磁体表面发生反射时,反射光的偏振面相对入射光发生旋转的物理现象,它反映了磁化强度对磁性材料光学性质的影响。磁性介质的磁光克尔效应则由含磁光常数的介电张量表征,因此对磁光常数进行精确测量具有重要的科学意义。光子自旋霍尔效应表现为光束在折射率不同的介质界面上传输时由于自旋-轨道相互作用而产生的光子自旋分裂现象。过去大多数研究利用光子自旋霍尔效应的横向空间位移来表征磁光常数。然而,现有工作只考虑了单个磁场方向的磁光克尔效应,并且由于微小的自旋空间位移而需要引入复杂的弱测量技术。本文从理论上全面探究了三种磁光克尔效应条件下的面内自旋角位移,发现通过改变磁场方向和磁性材料的厚度(考虑块状和超薄)可以实现对光子自旋霍尔效应的有效操纵。同时,该研究提出了一种直接测量磁光常数的新方法,即通过直接观测巨大的面内自旋角位移来表征磁光常数的振幅与相位。该方法不需要引入弱测量系统,不仅为磁光常数的测量提供了直接有效的探针,并且扩展了自旋光子学的相关研究。
    The magneto-optical Kerr effect (MOKE) manifests itself as the rotation of the polarization plane when a linearly polarized light is reflected at the interface of magnetic materials.The MOKE reveals the magnetization of the optical properties of magnetic materials and can be characterized by the dielectric tensor containing the magneto-optical constant.Thus,exploring the MOKE requires very precise determination of the magneto-optical constant.The photonic spin Hall effect (PSHE),which corresponds to the lateral and in-plane spin-dependent splitting of the beam,can be used as an effective method to characterize the magneto-optical constant due to its advantage of being extremely sensitive to changes in the physical parameters of the material.Most of the previous studies only consider the case of a single thickness of magnetic material and a single MOKE and need to introduce complex weak measurement techniques to observe the photonic spin Hall effect.In this work,we theoretically investigate the in-plane spin angular shifts in three MOKE cases in bulk and ultrathin magnetic materials.We can effectively tune the in-plane angular displacement of different magnetic material thicknesses by changing the magnetic field direction corresponding to different MOKEs and changing the magneto-optical constants (including amplitude and phase).The research results show that in the case of bulk and ultrathin magnetic materials,the internal spin angular displacement under different MOKEs will show different trends when the magneto-optical constants change the amplitude and phase,especially in ultra-thin magnetic materials.In the lateral Kerr effect in thin materials,the photon in-plane angular displacement does not affect the change of the magneto-optical constant,but in other cases,the amplitude relative to the phase has a much larger effect on the photon in-plane angular displacement.In this regard,we propose a new method to directly determine the amplitude and phase of the magneto-optical constant using the huge in-plane spin angular displacement without considering the weak measurements and can judge different magneto-optical Kerr according to the variation of the in-plane angular displacement in the bulk and ultrathin magnetic materials.This method not only provides a new probe for measuring magneto-optical constants but also expands the study of spin photonics.
  • [1]

    Stanciu C D, Hansteen F, Kimel A V, Kirilyuk A, Tsukamoto A, Itoh A, and Rasing T 2007 Phys. Rev. Lett. 99(4), 047601

    [2]

    Lee O J, You L, Jang J, Subramanian V, and Salahuddin S. 2015 Appl. Phys. Lett. 107(25), 252401

    [3]

    Zhao X, Zhang X, Yang H, Cai W, Zhao Y, Wang Z, and Zhao W 2019 Nanotech. 30(33), 335707

    [4]

    Hansteen. F, Kimel. A, Kirilyuk. A, and Rasing. T 2005 Phys. Rev. Lett. 95(4), 047402

    [5]

    Kerr LL D J, 1877Philos. Mag. J. Sci. 3(19), 321-343

    [6]

    Moog E R, and Bader S D 1985 Superlattices Microstruct. 1(6), 543-552

    [7]

    Soldatov I V, and Schäfer R 2017 J. Appl. Phys. 122(15), 153906

    [8]

    Akahane K, Kimura T, and Otani Y 2004 J. Magn. Soci. JP. 28(2), 122-127

    [9]

    Kato Y K, Myers R C, Gossard A C, and Awschalom D D 2004 Sci. 306(5703), 1910-1913

    [10]

    Grunin A A, Zhdanov A G, Ezhov A A, Ganshina E A, and Fedyanin A A 2010 Appl. Phys. Lett. 97(26), 261908

    [11]

    Florczak J M, and Dahlberg E D 1990 J. appl. Phys. 67(12), 7520-7525

    [12]

    Zak J, Moog E R, Liu C, and Bader S D 1990 J. appl. phys. 68(8), 4203-4207

    [13]

    Qiu Z Q, and Bader S D 2000 Rev. Sci. Instrum. 71(3), 1243-1255

    [14]

    Ren J, Li Y, Lin Y, Qin Y, Wu R, Yang J, Xiao Y, Yang H Y, and Gong Q 2012 Appl. Phys. Lett. 101(17), 171103

    [15]

    He Y, Xie L, Qiu J, Luo L, Liu X, Li Z, Zhang Z, and Du J. 2019 J. Appl. Phys. 125(2), 023101

    [16]

    Li G, Xiang J, Zhang Y, Deng F, Panmai M, Zhuang W, Lan S, and Lei D Y 2021 Nano Lett. 21(6), 2453-2460

    [17]

    Tian J, Zuo Y, Hou M, and Jiang Y 2021 Opt. Express. 29(6), 8763-8769

    [18]

    Qiu X, Zhou X, Hu D, Du J, Gao F, Zhang Z, and Luo H 2014 Appl. Phys. Lett. 105(13), 131111

    [19]

    Li T, Wang Q, Taallah A, Zhang S, Yu T, and Zhang Z 2020 Opt. Express. 28(20), 29086-29097

    [20]

    Onoda M, Murakami S, and Nagaosa N 2004 Phys. Rev. Lett. 93(8), 083901

    [21]

    Bliokh K Y, Rodriguez-Fortuno F J, Nori F, and Zayats A V 2015 Nat. Photon. 9(12), 796-808

    [22]

    Bliokh K Y, and Nori F 2015 Phys. Rep. 592,1-38

    [23]

    Kalhor F, Thundat T, and Jacob Z 2016 Appl. Phys. Lett. 108, 061102

    [24]

    Ling X, Zhou X, Huang K, Liu Y, Qiu C, Luo H, and Wen S 2017 Rep. Prog. Phys. 80 (6), 066401

    [25]

    Ling X H, Yi X N, Zhou X X, Liu Y C, Shu W X, Luo H L, Wen S C 2014 Appl. Phys. Lett. 105 151101

    [26]

    Li Y Q, Wu Z S, Zhang Y Y, Wang M J 2014 Chin. Phys. B 23 074202

    [27]

    Shitrit N, Ulevich I. Y, Maguid E, Ozeri D, Eksler D V, Kleiner V, and Hasman E 2013 Sci.340, 724

    [28]

    Zhou X, Sheng L, and Ling X 2018 Sci. Rep. 8, 1221

    [29]

    Xie L, Qiu X, Luo L, Liu X, Li Z, Zhang Z, Du J, and Wang D 2017 Appl. Phys. Lett. 111, 191106

    [30]

    Zhou X, Xiao Z, Luo H, and Wen S 2012 Phys. Rev. A85, 043809

    [31]

    Zhou X, Ling X, Luo H, and Wen S 2012 Appl. Phys. Lett. 101, 251602

    [32]

    Bliokh K Y, Smirnova D, and Nori F 2015 Sci. 348, 1448

    [33]

    Qin Y, Li Y, Feng X, Liu Z, He H, Xiao Y, and Gong Q 2010 Opt. Express. 18, 16832-16839

    [34]

    Zhang W, Wu W, Chen S, Zhang J, Ling X, Shu W, Lou H, and Wen S 2018 Photon.Res. 6, 511-516

    [35]

    Zhou X, Zhang J, Ling X, Chen S, Luo H, and Wen S 2013 Phys. Rev. A88 (5), 053840

    [36]

    Kort-Kamp W J. M 2017 Phys. Rev. Lett. 119 (14), 147401

    [37]

    Nalitov A V, Malpuech G, Terças H, and Solnyshkov D D 2015 Phys. Rev. Lett. 114, 026803

    [38]

    Cai L, Liu M, Chen S, Liu Y, Shu W, Luo H, and Wen S 2017 Phys. Rev. A 95(1), 013809

    [39]

    Kort-Kamp W J M, Culchac F J, Capaz R B, and Pinheiro F A 2018 Phys. Rev. B 98, 195431

    [40]

    Zhou X, Xiao Z, Luo H, and Wen S 2012 Phys. Rev. A85(4), 043809

    [41]

    Zhou X, Ling X, Luo H, and Wen S 2012 Appl. Phys. Lett. 101, 251602

    [42]

    Wu Y, Sheng L, Xie L, Li S, Nie P, Chen Y, Zhou X, and Ling X 2020 Carbon. 166, 396–404

    [43]

    Chen S, Ling X, Shu W, Luo H, and Wen S 2020 Phys. Rev. Appl. 13(1), 014057

    [44]

    Yang Z J and Scheinfein M R 1993 J. appl. phys. 74(11), 6810-6823

    [45]

    Bliokh K Y, Kivshar Y S, and Nori F 2014 Phys. Rev. Lett. 113(3),033601

    [46]

    You C Y, and Shin S C 1998 J. appl. phys. 84(1), 541-546

  • [1] 薛文明, 李金, 何朝宇, 欧阳滔, 罗朝波, 唐超, 钟建新. H-Pb-Cl中可调控的巨型Rashba自旋劈裂和量子自旋霍尔效应.  , doi: 10.7498/aps.72.20221493
    [2] 刘香莲, 李凯宙, 李晓琼, 张强. 二维电介质光子晶体中量子自旋与谷霍尔效应共存的研究.  , doi: 10.7498/aps.72.20221814
    [3] 李乾阳, 袁帅杰, 杨锦, 王勇, 马祖海, 陈宇, 周新星. 块状和超薄磁性材料中巨大且可调控的面内自旋角位移.  , doi: 10.7498/aps.72.20221643
    [4] 谢智强, 贺炎亮, 王佩佩, 苏明样, 陈学钰, 杨博, 刘俊敏, 周新星, 李瑛, 陈书青, 范滇元. 基于Pancharatnam-Berry相位超表面的二维光学边缘检测.  , doi: 10.7498/aps.69.20191181
    [5] 梁滔, 李铭. 自旋轨道耦合系统中的整数量子霍尔效应.  , doi: 10.7498/aps.68.20190037
    [6] 何冬梅, 彭斌, 张万里, 张文旭. 掺铌SrTiO3中的逆自旋霍尔效应.  , doi: 10.7498/aps.68.20190118
    [7] 刘金安, 涂佳隆, 卢志利, 吴柏威, 胡琦, 马洪华, 陈欢, 易煦农. 基于Pancharatnam-Berry相位和动力学相位调控纵向光子自旋霍尔效应.  , doi: 10.7498/aps.68.20182004
    [8] 万婷, 罗朝明, 闵力, 陈敏, 肖磊. 基于合金介电常数的可控特性增强光子自旋霍尔效应.  , doi: 10.7498/aps.67.20171824
    [9] 耿虎, 计青山, 张存喜, 王瑞. 缀饰格子中时间反演对称破缺的量子自旋霍尔效应.  , doi: 10.7498/aps.66.127303
    [10] 龙洋, 任捷, 江海涛, 孙勇, 陈鸿. 超构材料中的光学量子自旋霍尔效应.  , doi: 10.7498/aps.66.227803
    [11] 陈聿, 刘垄, 黄忠, 屠林林, 詹鹏. 一维金属光栅嵌入磁性介质纳米结构下的横向磁光克尔效应的增强.  , doi: 10.7498/aps.65.147302
    [12] 易煦农, 李瑛, 凌晓辉, 张志友, 范滇元. 光在Metasurface中的自旋-轨道相互作用.  , doi: 10.7498/aps.64.244202
    [13] 韩方彬, 张文旭, 彭斌, 张万里. NiFe/Pt薄膜中角度相关的逆自旋霍尔效应.  , doi: 10.7498/aps.64.247202
    [14] 王莉岑, 邱晓东, 张志友, 石瑞英. 磁光克尔效应中的光子自旋分裂.  , doi: 10.7498/aps.64.174202
    [15] 罗幸, 周新星, 罗海陆, 文双春. 光自旋霍尔效应中的交叉偏振特性研究.  , doi: 10.7498/aps.61.194202
    [16] 蒋洪良, 张荣军, 周宏明, 姚端正, 熊贵光. InAs量子点中自旋-轨道相互作用下电子自旋弛豫的参量特征.  , doi: 10.7498/aps.60.017204
    [17] 王志明. GaAs自旋注入及巨霍尔效应的研究.  , doi: 10.7498/aps.60.077203
    [18] 马娟, 罗海陆, 文双春. 多层介质中的光自旋霍尔效应研究.  , doi: 10.7498/aps.60.094205
    [19] 周文远, 田建国, 臧维平, 刘智波, 张春平, 张光寅. 克尔介质中瞬态热光非线性效应的作用.  , doi: 10.7498/aps.53.620
    [20] 周青春, 王嘉赋, 徐荣青. 自旋-轨道耦合对磁性绝缘体磁光Kerr效应的影响.  , doi: 10.7498/aps.51.1639
计量
  • 文章访问数:  1989
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 上网日期:  2022-09-28

/

返回文章
返回
Baidu
map