-
本文结合狄拉克半金属(DSMs)研究了一种基于各向异性构型的可调谐宽频带太赫兹偏振转换超表面,其中的狄拉克半金属线阵列有利于费米能的调控。研究结果表明该超表面可以实现宽带高效率的偏振转换,在谐振模式处具有半波片特性。这种转换特性源于局域表面等离子体激元谐振(LSPRs)的激发和结构自身的各向异性。当入射角在0°~40°范围内变化时,能保持高效的宽带偏振转换特性,大于40°后,宽带转换逐渐转变为双带或多带转换。此外,发现AlCuFe的费米能从65 meV增大至140 meV过程中,偏振转换效率能维持在很高水平,并且转换性能由单带转换变为宽带转换再变为带较宽的宽带转换与带较窄的单带转换。同时,通过讨论结合了不同类型狄拉克半金属的超表面,得出了狄拉克半金属的金属性越好,相应超表面的宽带偏振转换性能越优的结论。最后,基于类法布里-佩罗谐振腔的多重干涉理论(MIT)对数值结果进行了验证。Combined with the Dirac semimetals (DSMs), which is a new type of material and also called as 3D graphene, a tunable wideband terahertz polarization conversion metasurface based on an anisotropic configuration is studied, in which the DSMs wire array is beneficial to the regulation of Fermi energy. The results show that the metasurface can realize wideband and highly efficient polarization conversion, and has the property of half wave plate at the resonant modes. This characteristics are derived from the excitation of Localized Surface Plasmon Resonances (LSPRs) and the anisotropy of structure itself. When the incident angle changes in the range of 0°~40°, the high efficiency of wideband polarization conversion can be maintained. When it is greater than 40°, the wideband polarization conversion gradually changes to the dual-band or the multi-band conversion. Furthermore, it is found that in the process of increasing the Fermi energy of AlCuFe from 65 meV to 140 meV, the polarization conversion ratio can be maintained at a high level, and the conversion performance changes from single-band conversion to wideband conversion, and then to wideband conversion with wider band and single-band conversion with narrower band. At the same time, by discussing the metasurface combined with the different DSMs, it is concluded that the better the metallic property of DSMs is, the better the wideband polarization conversion performance of the corresponding metasurface is. At last, the numerical results are verified by the Multiple Interference Theory (MIT) based on the Fabry-Pérot-like resonance cavity.
-
Keywords:
- Terahertz tunable metasurface /
- Dirac semimetals /
- Wideband polarization conversion /
- Multiple interference theory
-
[1] Gruev V, Perkins R, York T 2010 Opt. Express 18 19087
[2] Zhao X, Boussaid F, Bermak A, Chigrinov V G 2011 Opt. Express 19 5565
[3] Beruete M, Navarro-Cía M, Sorolla M, Campillo I 2008 J. Appl. Phys. 103 053102
[4] Liu S, Zhang P, Liu W, Gong S, Zhong R, Zhang Y, Hu M 2012 Phys. Rev. Lett. 109 153902
[5] Takagi K, Nair S V, Watanabe R, Seto K, Kobayashi T, Tokunaga E 2017 J. Phys. Soc. Jpn. 86 124721
[6] Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749
[7] Li Q, Tian Z, Zhang X, Singh R, Du L, Gu J, Han J, Zhang W 2015 Nat. Commun. 6 7082
[8] Huang W, Liang S J, Kyoseva E, Ang L K 2018 Carbon 127 187
[9] Huang W, Yin S, Zhang W, Wang K, Zhang Y, Han J 2019 New J. Phys. 21 113004
[10] Feng Y, Cao L, Zhang Y 2021 IEEE J. Sel. Top. Quantum Electron. 27 8500205
[11] Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603
[12] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677
[13] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864
[14] Meng W L, Hou B Y, Cao Q H, Lin H M, Zhou W, Li Z X, Li D H 2020 Microw. Opt. Technol. Lett. 1
[15] Dai L L, Zhang Y P, Zhang H Y, O’Hara J F 2019 Appl. Phys. Express 12 075003
[16] Dai L L, Zhang Y P, Guo X H, Zhao Y K, Liu S D, Zhang H Y 2018 Opt. Mater. Express 8 3238
[17] Dai L L, Zhang Y P, Zhang Y L, Liu S D, Zhang H Y 2020 Opt. Commun. 468 125802
[18] Zhang Y P, Tian Y S, Zhang Y L, Dai L L, Liu S D, Zhang Y, Zhang H Y 2020 Opt. Commun. 477 126348
[19] Yang C H, Gao Q G, Dai L L, Zhang Y L, Zhang H Y, Zhang Y P 2020 Opt. Mater. Express 10 2289
[20] Jia D L, Xu J, Yu X M 2018 Opt. Express 26 26227
[21] Seo M A, Park H R, Koo S M, Park D J, Kang J H, Suwal O K, Choi S S, Planken P C M, Park G S, Park N K, Park Q H, Kim D S 2009 Nat. Photonics 3 152
[22] Liu D J, Xiao Z Y, Ma X L, Xu K K, Tang J Y, Wang Z H 2016 Wave Motion 66 1
[23] Xu K K, Xiao Z Y, Tang J Y 2017 Plasmonics 12 1869
[24] Zhong R B, Yang L, Liang Z K, Wu Z H, Wang Y Q, Ma A C, Fang Z, Liu S G 2020 Opt. Express 28 28773
[25] Wang Y, Wang Y, Li Q Y, Zhang Y, Yan S Y, Wang C H 2021 Opt. Express 29 26865
[26] Kotov O V, Lozovik Y E 2016 Phys. Rev. B 93 235417-1
[27] Wang Y Q, Yi Y T, Xu D Y, Yi Z, Li Z Y, Chen X F, Jile H, Zhang J G, Zeng L C, Li G F 2021 Physica E 131 114750
[28] Liu G D, Zhai X, Meng H Y, Lin Q, Huang Y, Zhao C J, Wang L L 2018 Opt. Express 26 11471
[29] Luo J, Lin Q, Wang L L, Xia S X, Meng H Y, Zhai X 2019 Opt. Express 27 20165
[30] Meng H Y, Shang X J, Xue X X, Tang K Z, Xia S X, Zhai X, Liu Z R, Chen J H, Li H J, Wang L L 2019 Opt. Express 27 31062
[31] Timusk T, Carbotte J P, Homes C C, Basov D N, Sharapov S G 2013 Phys. Rev. B 87 235121-1
[32] Zheng X X, Xiao Z Y, Ling X Y 2016 Opt. Quant. Electron. 48 461
[33] Zhang H J, Liu Y, Liu Z Q, Liu X S, Liu G Q, Fu G L, Wang J Q, Shen Y 2021 Opt. Express 29 70
[34] Lin R, Lu F K, He X L, Jiang Z L, Liu C, Wang S Y, Kong Y 2021 Opt. Express 29 30357
[35] Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908-1
[36] Li F X, Zhang L B, Zhou P H, Chen H Y, Zhao R, Zhou Y, Liang D F, Lu H P, Deng L J 2018 Appl. Phys. B 124 28
[37] Gandhi C, Babu P R, Senthilnathan K 2019 J. Infrared Milli. Terahz. Waves 40 500
[38] Gao X, Singh L, Yang W L, Zheng J J, Li H O, Zhang W L 2017 Sci. Rep. 7 6817
[39] Jiang Y N, Wang L, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616
[40] Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522
[41] Zhang J G, Tian J P, Li L 2018 IEEE Photon. J 10 4800512
[42] Meng W W, Que L C, Lv J, Zhang L W, Zhou Y, Jiang Y D 2019 Results Phys. 14 102461
[43] Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304
[44] Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. Express 8 597
[45] Zhang J G, Tian J P, Xiao S Y, Li L 2020 IEEE Access 8 46505
计量
- 文章访问数: 2756
- PDF下载量: 92
- 被引次数: 0