搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面

张建国 易早 康永强 任浩 王文艳 周婧璠 郝慧珍 常会东 高英豪 陈亚慧 李艳娜

引用本文:
Citation:

局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面

张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜

A high-efficiency wideband tunable polarization conversion metasurface assisted by the localized surface plasmon resonances

Zhang Jian-Guo, Yi Zao, Kang Yong-Qiang, Ren Hao, Wang Wen-Yan, Zhou Jing-Fan, Hao Hui-Zhen, Chang Hui-Dong, Gao Ying-Hao, Chen Ya-Hui, Li Yan-Na
PDF
导出引用
  • 本文结合狄拉克半金属(DSMs)研究了一种基于各向异性构型的可调谐宽频带太赫兹偏振转换超表面,其中的狄拉克半金属线阵列有利于费米能的调控。研究结果表明该超表面可以实现宽带高效率的偏振转换,在谐振模式处具有半波片特性。这种转换特性源于局域表面等离子体激元谐振(LSPRs)的激发和结构自身的各向异性。当入射角在0°~40°范围内变化时,能保持高效的宽带偏振转换特性,大于40°后,宽带转换逐渐转变为双带或多带转换。此外,发现AlCuFe的费米能从65 meV增大至140 meV过程中,偏振转换效率能维持在很高水平,并且转换性能由单带转换变为宽带转换再变为带较宽的宽带转换与带较窄的单带转换。同时,通过讨论结合了不同类型狄拉克半金属的超表面,得出了狄拉克半金属的金属性越好,相应超表面的宽带偏振转换性能越优的结论。最后,基于类法布里-佩罗谐振腔的多重干涉理论(MIT)对数值结果进行了验证。
    Combined with the Dirac semimetals (DSMs), which is a new type of material and also called as 3D graphene, a tunable wideband terahertz polarization conversion metasurface based on an anisotropic configuration is studied, in which the DSMs wire array is beneficial to the regulation of Fermi energy. The results show that the metasurface can realize wideband and highly efficient polarization conversion, and has the property of half wave plate at the resonant modes. This characteristics are derived from the excitation of Localized Surface Plasmon Resonances (LSPRs) and the anisotropy of structure itself. When the incident angle changes in the range of 0°~40°, the high efficiency of wideband polarization conversion can be maintained. When it is greater than 40°, the wideband polarization conversion gradually changes to the dual-band or the multi-band conversion. Furthermore, it is found that in the process of increasing the Fermi energy of AlCuFe from 65 meV to 140 meV, the polarization conversion ratio can be maintained at a high level, and the conversion performance changes from single-band conversion to wideband conversion, and then to wideband conversion with wider band and single-band conversion with narrower band. At the same time, by discussing the metasurface combined with the different DSMs, it is concluded that the better the metallic property of DSMs is, the better the wideband polarization conversion performance of the corresponding metasurface is. At last, the numerical results are verified by the Multiple Interference Theory (MIT) based on the Fabry-Pérot-like resonance cavity.
  • [1]

    Gruev V, Perkins R, York T 2010 Opt. Express 18 19087

    [2]

    Zhao X, Boussaid F, Bermak A, Chigrinov V G 2011 Opt. Express 19 5565

    [3]

    Beruete M, Navarro-Cía M, Sorolla M, Campillo I 2008 J. Appl. Phys. 103 053102

    [4]

    Liu S, Zhang P, Liu W, Gong S, Zhong R, Zhang Y, Hu M 2012 Phys. Rev. Lett. 109 153902

    [5]

    Takagi K, Nair S V, Watanabe R, Seto K, Kobayashi T, Tokunaga E 2017 J. Phys. Soc. Jpn. 86 124721

    [6]

    Grigorenko A N, Polini M, Novoselov K S 2012 Nat. Photonics 6 749

    [7]

    Li Q, Tian Z, Zhang X, Singh R, Du L, Gu J, Han J, Zhang W 2015 Nat. Commun. 6 7082

    [8]

    Huang W, Liang S J, Kyoseva E, Ang L K 2018 Carbon 127 187

    [9]

    Huang W, Yin S, Zhang W, Wang K, Zhang Y, Han J 2019 New J. Phys. 21 113004

    [10]

    Feng Y, Cao L, Zhang Y 2021 IEEE J. Sel. Top. Quantum Electron. 27 8500205

    [11]

    Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B, Cava R J 2014 Phys. Rev. Lett. 113 027603

    [12]

    Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z, Chen Y L 2014 Nat. Mater. 13 677

    [13]

    Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z, Chen Y L 2014 Science 343 864

    [14]

    Meng W L, Hou B Y, Cao Q H, Lin H M, Zhou W, Li Z X, Li D H 2020 Microw. Opt. Technol. Lett. 1

    [15]

    Dai L L, Zhang Y P, Zhang H Y, O’Hara J F 2019 Appl. Phys. Express 12 075003

    [16]

    Dai L L, Zhang Y P, Guo X H, Zhao Y K, Liu S D, Zhang H Y 2018 Opt. Mater. Express 8 3238

    [17]

    Dai L L, Zhang Y P, Zhang Y L, Liu S D, Zhang H Y 2020 Opt. Commun. 468 125802

    [18]

    Zhang Y P, Tian Y S, Zhang Y L, Dai L L, Liu S D, Zhang Y, Zhang H Y 2020 Opt. Commun. 477 126348

    [19]

    Yang C H, Gao Q G, Dai L L, Zhang Y L, Zhang H Y, Zhang Y P 2020 Opt. Mater. Express 10 2289

    [20]

    Jia D L, Xu J, Yu X M 2018 Opt. Express 26 26227

    [21]

    Seo M A, Park H R, Koo S M, Park D J, Kang J H, Suwal O K, Choi S S, Planken P C M, Park G S, Park N K, Park Q H, Kim D S 2009 Nat. Photonics 3 152

    [22]

    Liu D J, Xiao Z Y, Ma X L, Xu K K, Tang J Y, Wang Z H 2016 Wave Motion 66 1

    [23]

    Xu K K, Xiao Z Y, Tang J Y 2017 Plasmonics 12 1869

    [24]

    Zhong R B, Yang L, Liang Z K, Wu Z H, Wang Y Q, Ma A C, Fang Z, Liu S G 2020 Opt. Express 28 28773

    [25]

    Wang Y, Wang Y, Li Q Y, Zhang Y, Yan S Y, Wang C H 2021 Opt. Express 29 26865

    [26]

    Kotov O V, Lozovik Y E 2016 Phys. Rev. B 93 235417-1

    [27]

    Wang Y Q, Yi Y T, Xu D Y, Yi Z, Li Z Y, Chen X F, Jile H, Zhang J G, Zeng L C, Li G F 2021 Physica E 131 114750

    [28]

    Liu G D, Zhai X, Meng H Y, Lin Q, Huang Y, Zhao C J, Wang L L 2018 Opt. Express 26 11471

    [29]

    Luo J, Lin Q, Wang L L, Xia S X, Meng H Y, Zhai X 2019 Opt. Express 27 20165

    [30]

    Meng H Y, Shang X J, Xue X X, Tang K Z, Xia S X, Zhai X, Liu Z R, Chen J H, Li H J, Wang L L 2019 Opt. Express 27 31062

    [31]

    Timusk T, Carbotte J P, Homes C C, Basov D N, Sharapov S G 2013 Phys. Rev. B 87 235121-1

    [32]

    Zheng X X, Xiao Z Y, Ling X Y 2016 Opt. Quant. Electron. 48 461

    [33]

    Zhang H J, Liu Y, Liu Z Q, Liu X S, Liu G Q, Fu G L, Wang J Q, Shen Y 2021 Opt. Express 29 70

    [34]

    Lin R, Lu F K, He X L, Jiang Z L, Liu C, Wang S Y, Kong Y 2021 Opt. Express 29 30357

    [35]

    Hao J M, Yuan Y, Ran L X, Jiang T, Kong J A, Chan C T, Zhou L 2007 Phys. Rev. Lett. 99 063908-1

    [36]

    Li F X, Zhang L B, Zhou P H, Chen H Y, Zhao R, Zhou Y, Liang D F, Lu H P, Deng L J 2018 Appl. Phys. B 124 28

    [37]

    Gandhi C, Babu P R, Senthilnathan K 2019 J. Infrared Milli. Terahz. Waves 40 500

    [38]

    Gao X, Singh L, Yang W L, Zheng J J, Li H O, Zhang W L 2017 Sci. Rep. 7 6817

    [39]

    Jiang Y N, Wang L, Wang J, Akwuruoha C N, Cao W P 2017 Opt. Express 25 27616

    [40]

    Gao X, Han X, Cao W P, Li H O, Ma H F, Cui T J 2015 IEEE Trans. Antennas Propag. 63 3522

    [41]

    Zhang J G, Tian J P, Li L 2018 IEEE Photon. J 10 4800512

    [42]

    Meng W W, Que L C, Lv J, Zhang L W, Zhou Y, Jiang Y D 2019 Results Phys. 14 102461

    [43]

    Grady N K, Heyes J E, Chowdhury D R, Zeng Y, Reiten M T, Azad A K, Taylor A J, Dalvit D A R, Chen H T 2013 Science 340 1304

    [44]

    Jia Y T, Liu Y, Zhang W B, Wang J, Wang Y Z, Gong S X, Liao G S 2018 Opt. Mater. Express 8 597

    [45]

    Zhang J G, Tian J P, Xiao S Y, Li L 2020 IEEE Access 8 46505

  • [1] 王丹, 李九生, 郭风雷. 宽带吸收与极化转换可切换的太赫兹超表面.  , doi: 10.7498/aps.73.20240525
    [2] 栾迦淇, 张亚杰, 陈羽, 郜定山, 李培丽, 李嘉琦, 李佳琪. 基于遗传算法的太赫兹多功能可重构狄拉克半金属编码超表面.  , doi: 10.7498/aps.73.20240225
    [3] 孙斌, 赵立臣, 刘杰. 双孤子非线性干涉中的狄拉克磁单极势.  , doi: 10.7498/aps.72.20222416
    [4] 杨东如, 程用志, 罗辉, 陈浮, 李享成. 基于双开缝环结构的半反射和半透射超宽带超薄双偏振太赫兹超表面.  , doi: 10.7498/aps.72.20230471
    [5] 王焕文, 付博, 沈顺清. 狄拉克量子材料中的输运理论进展.  , doi: 10.7498/aps.72.20230672
    [6] 徐诗琳, 胡岳芳, 袁丹文, 陈巍, 张薇. 应变调控下Tl2Ta2O7中的拓扑相变.  , doi: 10.7498/aps.72.20230043
    [7] 黄晓俊, 高焕焕, 何嘉豪, 栾苏珍, 杨河林. 动态可调谐的频域多功能可重构极化转换超表面.  , doi: 10.7498/aps.71.20221256
    [8] 刘靖宇, 李文宇, 刘智星, 舒敬懿, 赵国忠. 基于V形超表面的透射式太赫兹线偏振转换器.  , doi: 10.7498/aps.71.20221259
    [9] 姚海云, 闫昕, 梁兰菊, 杨茂生, 杨其利, 吕凯凯, 姚建铨. 图案化石墨烯/氮化镓复合超表面对太赫兹波在狄拉克点的动态多维调制.  , doi: 10.7498/aps.71.20211845
    [10] 张建国, 易早, 康永强, 任浩, 王文艳, 周婧璠, 郝慧珍, 常会东, 高英豪, 陈亚慧, 李艳娜. 局域表面等离子体谐振辅助的高效率宽频带可调谐偏振转换超表面.  , doi: 10.7498/aps.70.20220288
    [11] 杨俊涛, 熊永臣, 黄海铭, 罗时军. 多狄拉克锥的二维CrPSe3的半金属铁磁性与电子结构(已撤稿).  , doi: 10.7498/aps.69.20200960
    [12] 陈俊, 杨茂生, 李亚迪, 程登科, 郭耿亮, 蒋林, 张海婷, 宋效先, 叶云霞, 任云鹏, 任旭东, 张雅婷, 姚建铨. 基于超材料的可调谐的太赫兹波宽频吸收器.  , doi: 10.7498/aps.68.20191216
    [13] 张银, 冯一军, 姜田, 曹杰, 赵俊明, 朱博. 基于石墨烯的太赫兹波散射可调谐超表面.  , doi: 10.7498/aps.66.204101
    [14] 张会云, 黄晓燕, 陈琦, 丁春峰, 李彤彤, 吕欢欢, 徐世林, 张晓, 张玉萍, 姚建铨. 基于石墨烯互补超表面的可调谐太赫兹吸波体.  , doi: 10.7498/aps.65.018101
    [15] 杨磊, 范飞, 陈猛, 张选洲, 常胜江. 多功能太赫兹超表面偏振控制器.  , doi: 10.7498/aps.65.080702
    [16] 闫昕, 梁兰菊, 张雅婷, 丁欣, 姚建铨. 基于编码超表面的太赫兹宽频段雷达散射截面缩减的研究.  , doi: 10.7498/aps.64.158101
    [17] 曹惠娴, 梅军. 声子晶体中的半狄拉克点研究.  , doi: 10.7498/aps.64.194301
    [18] 李勇峰, 张介秋, 屈绍波, 王甲富, 陈红雅, 徐卓, 张安学. 宽频带雷达散射截面缩减相位梯度超表面的设计及实验验证.  , doi: 10.7498/aps.63.084103
    [19] 李忠洋, 姚建铨, 李俊, 邴丕彬, 徐德刚, 王鹏. 基于闪锌矿晶体中受激电磁耦子散射产生可调谐太赫兹波的理论研究.  , doi: 10.7498/aps.59.6237
    [20] 刘 欢, 徐德刚, 姚建铨. 基于GaSe和ZnGeP2晶体差频产生可调谐太赫兹辐射的理论研究.  , doi: 10.7498/aps.57.5662
计量
  • 文章访问数:  2756
  • PDF下载量:  92
  • 被引次数: 0
出版历程
  • 上网日期:  2022-03-15

/

返回文章
返回
Baidu
map