搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维晶格中全同任意子的量子动力学与关联

王利 贾丽芳 张云波

引用本文:
Citation:

一维晶格中全同任意子的量子动力学与关联

王利, 贾丽芳, 张云波

Quantum Dynamics and Correlations of Indistinguishable Anyons in One-Dimensional Lattices

Wang Li, Jia Lifang, Zhang Yunbo
PDF
导出引用
  • 任意子介于玻色子与费米子之间,遵从奇特的分数统计,隐含着许多有趣的物理特性。本文研究了一维晶格中相互作用全同任意子的少体量子动力学及其量子关联性质。基于严格的数值方法,分析了任意子在晶格中局域粒子密度分布的动力学演化过程。结果表明,分数统计可以明显影响任意子动力学演化过程中实空间的局域粒子密度分布,产生新的动力学结构。特别地,当存在相互作用时,分数统计粒子的局域粒子密度分布会呈现有趣的依赖于相互作用性质的不对称性。最后计算了任意子的密度密度关联,分析了粒子统计性质和相互作用对体系量子关联的调制,同时进一步证实了任意子分数统计在实空间中的动力学效应。
    Anyons, namely particles obeying fractional quantum statistics that interpolate between bosons and fermions, possess a lot of new and exotic physical properties related to the particle exchange statistics. In this work, we explore the few-body quantum dynamics and quantum correlations of indistinguishable anyons with on-site interactions in onedimensional lattices within the scheme of three-body continuous-time quantum walks. By employing a time-evolving block decimation (TEBD) algorithm, we numerically calculate the dynamical evolution process of the local density distribution of anyons among the whole lattice. Numerical simulations shown in the main text mainly focus on a threebody initial state as ψ|(t=0)>=â-1â0â1|0>, in which three particles are located on neighbouring sites at lattice centre. This choice of initial state features that the three particles influence one another most strongly, while we have also implemented numerical simulations on other choices of three-body initial states as are discussed in appendix. It is shown that the local density distribution of anyons is dramatically altered by fractional particle statistics with new dynamical structure showing up during the time evolution. For free anyons, an inner cone emerges as the statistical parameter increases, while the outer cone remains robust all along. When the on-site interaction joins in, the structure of the inner cone is further modified with new features. Specifically, for interaction of finite strength, an exotic dynamical asymmetry in real space, is clearly demonstrated during the time evolution of the local density distribution for particles within the fractional statistics regime. However, for boson limit and pseudofermion limit, the time evolution of the local density distribution keeps symmetric as the three-body initial state. And remarkably, the dynamical asymmetry is interactiondependent manifested as the local density distribution of anyons favors opposite side of the lattice for repulsive and attractive interaction, respectively. Moreover, when the on-site interaction is further increased to hard-core limit, the dynamical asymmetry will then be largely suppressed. We also calculate the density-density correlations for anyons before they reach the lattice boundary to reveal the interesting effect of fractional statistics on quantum correlations. It is shown that the inner cone corresponds to co-walking of anyons, while the outer cone is related to individual walking and is immune to the variation of statistical parameter. Furthermore, the exotic real-space asymmetry originated from the interplay of fractional statistics and finite interaction is also shown up in the density-density correlations.
  • [1]

    Farhi E, Gutmann S 1998 Phys. Rev. A 58915

    [2]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 481687

    [3]

    Kempe J 2003 Contemp. Phys. 44307

    [4]

    Manouchehri K, Wang J B 2013 Physical implementation of quantum walks (Berlin: Springer)

    [5]

    Karski M, Förster L, Choi J M, Steffen A, Alt W, Meschede D, Widera A 2009 Science 325174

    [6]

    Preiss P M, Ma R, Tai M E, Lukin A, Rispoli M, Zupancic P, Lahini Y, Islam R, Greiner M 2015 Science 3471229

    [7]

    Broome M A, Fedrizzi A, Lanyon B P, Kassal I, Aspuru-Guzik A, White A G 2010 Phys. Rev. Lett.104153602

    [8]

    Xue P, Zhang R, Qin H, Zhan X, Bian Z H, Li J, Sanders B C 2015 Phys. Rev. Lett. 114140502

    [9]

    Ramasesh V V, Flurin E, Rudner M, Siddiqi I, Yao N Y 2017 Phys. Rev. Lett. 118130501

    [10]

    Yan Z, Zhang Y R, Gong M, Wu Y, Zheng Y, Li S, Wang C, Liang F, Lin J, Xu Y, Guo C, Sun L,Peng C Z, Xia K, Deng H, Rong H, You J Q, Nori F, Fan H, Zhu X, Pan J W 2019 Science 364753

    [11]

    Ye Y S, Ge Z Y, Wu Y L, Wang S Y, Gong M, Zhang Y R, Zhu Q L, Yang R, Li S W, Liang F T, Lin J, Xu Y, Guo C, Sun L H, Cheng C, Ma N, Meng Z Y, Deng H, Rong H, Lu C Y, Peng C Z, Fan H, Zhu X B, Pan J W 2019 Phys. Rev. Lett. 123050502

    [12]

    Sansoni L, Sciarrino F, Vallone G, Mataloni P, Crespi A, Ramponi R, Osellame R 2012 Phys. Rev. Lett. 108010502

    [13]

    Du J F, Li H, Xu X D, Shi M J, Wu J H, Zhou X Y, Han R D 2003 Phys. Rev. A 67042316

    [14]

    Schmitz H, Matjeschk R, Schneider C, Glueckert J, Enderlein M, Huber T, Schaetz T 2009 Phys. Rev. Lett. 103090504

    [15]

    Ambainis A 2003 Int. J. Quantum Inf. 1507

    [16]

    Childs A M, Gosset D, Webb Z 2013 Science 339791

    [17]

    Zatelli F, Benedetti C, Paris M G A 2020 Entropy 221321

    [18]

    Venegas-Andraca S E 2012 Quantum Inf. Process. 111015

    [19]

    Kitagawa T, Broome M A, Fedrizzi A, Rudner M S, Berg E, Kassal I, Aspuru-Guzik A, Demler E, White A G 2012 Nat. Commun. 3882

    [20]

    Ramasesh V V, Flurin E, Rudner M, Siddiqi I, Yao N Y 2017 Phys. Rev. Lett. 118130501

    [21]

    Wang K K, Li T Y, Xiao L, Han Y W, Yi W, Xue P 2021 Phys. Rev. Lett. 127270602

    [22]

    Liu W J, Ke Y G, Zhang L, Lee C H 2019 Phys. Rev. A 99063614

    [23]

    Tarallo M G, Mazzoni T, Poli N, Sutyrin D V, Zhang X, Tino G M 2014 Phys. Rev. Lett. 113023005

    [24]

    Yin Y, Katsanos D E, Evangelou S N 2008 Phys. Rev. A 77022302

    [25]

    Beggi A, Buscemi F, Bordone P 2016 Quantum Inf. Process. 153711

    [26]

    Li Z J, Wang J B 2015 Sci. Rep. 513585

    [27]

    Wang L M, Wang L, Zhang Y B 2014 Phys. Rev. A 90063618

    [28]

    Qin X Z, Ke Y G, Guan X W, Li Z B, Andrei N, Lee C H 2014 Phys. Rev. A 90062301

    [29]

    Wang L, Hao Y J, Chen S 2010 Phys. Rev. A 81063637

    [30]

    Ganahl M, Rabel E, Essler F H L, Evertz H G 2012 Phys. Rev. Lett. 108077206

    [31]

    Sarkar S, Sowiński T 2020 Phys. Rev. A 102043326

    [32]

    Wang L, Hao Y J, Chen S 2008 Eur. Phys. J. D 48229

    [33]

    Kraus Y E, Lahini Y, Ringel Z, Verbin M, Zilberberg O 2012 Phys. Rev. Lett. 109106402

    [34]

    Wang L, Liu N, Chen S, Zhang Y B 2015 Phys. Rev. A 92053606

    [35]

    Wang L, Liu N, Chen S, Zhang Y B 2017 Phys. Rev. A 95013619

    [36]

    Cai X M, Yang H T, Shi H L, Lee C H, Andrei N, Guan X W 2021 Phys. Rev. Lett. 127100406

    [37]

    Wilczek F 1982 Phys. Rev. Lett. 49957

    [38]

    Halperin B I 1984 Phys. Rev. Lett. 521583

    [39]

    Haldane F D M 1991 Phys. Rev. Lett. 67937

    [40]

    Stern A 2008 Ann. Phys. 323204

    [41]

    Bartolomei H, Kumar M, Bisognin R, Marguerite A, Berroir J M, Bocquillon E, Plaçais B, Cavanna A, Dong Q, Gennser U, Jin Y, Fève G 2020 Science 368173

    [42]

    Nakamura J, Liang S, Gardner G C, Manfra M J 2020 Nat. Phys. 16931

    [43]

    Nayak C, Simon S H, Stern A, Freedman M, Das Sarma S 2008 Rev. Mod. Phys. 801083

    [44]

    Batchelor M T, Guan X W, Oelkers N 2006 Phys. Rev. Lett. 96210402

    [45]

    Kundu A 1999 Phys. Rev. Lett. 831275

    [46]

    Girardeau M D 2006 Phys. Rev. Lett. 97100402

    [47]

    Keilmann T, Lanzmich S, McCulloch I, Roncaglia M 2011 Nat. Commun. 2361

    [48]

    Greschner S, Santos L 2015 Phys. Rev. Lett. 115053002

    [49]

    Vidal G 2003 Phys. Rev. Lett. 91147902

    [50]

    Hao Y J, Zhang Y B, Chen S 2008 Phys. Rev. A 78023631

  • [1] 赵伟宽, 张凌, 程云鑫, 周呈熙, 张文敏, 段艳敏, 胡爱兰, 王守信, 张丰玲, 李政伟, 曹一鸣, 刘海庆. EAST托卡马克钨杂质上下不对称性分布的实验研究.  , doi: 10.7498/aps.73.20231448
    [2] 郭瑞雪, 艾保全. 可形变自驱动粒子在不对称周期管中的定向输运.  , doi: 10.7498/aps.72.20230825
    [3] 应耀俊, 李海彬. 不对称双势阱中玻色-爱因斯坦凝聚体的动力学.  , doi: 10.7498/aps.72.20230419
    [4] 姜瑶瑶, 张文彬, 初鹏程, 马鸿洋. 基于置换群的多粒子环上量子行走的反馈搜索算法.  , doi: 10.7498/aps.71.20211000
    [5] 杨艳, 张斌, 任仲雪, 白光如, 刘璐, 赵增秀. 极性分子CO高次谐波产生过程中的不对称性.  , doi: 10.7498/aps.71.20221714
    [6] 鱼在洋, 郑锦韬, 张洋, 汪之国, 孙辉, 熊志强, 罗晖. 核磁共振陀螺中EPR信号响应不对称性研究.  , doi: 10.7498/aps.71.20220775
    [7] 王利, 贾丽芳, 张云波. 一维晶格中全同任意子的量子动力学与关联.  , doi: 10.7498/aps.70.20220188
    [8] 滕利华, 牟丽君. 掺杂对称性对(110)晶向生长GaAs/AlGaAs量子阱中电子自旋弛豫动力学的影响}.  , doi: 10.7498/aps.66.046802
    [9] 王文娟, 童培庆. 广义Fibonacci时间准周期量子行走波包扩散的动力学特性.  , doi: 10.7498/aps.65.160501
    [10] 温少芳, 申永军, 杨绍普. 分数阶时滞反馈对Duffing振子动力学特性的影响.  , doi: 10.7498/aps.65.094502
    [11] 白金海, 芦小刚, 缪兴绪, 裴丽娅, 王梦, 高艳磊, 王如泉, 吴令安, 傅盘铭, 左战春. Rb87冷原子电磁感应透明吸收曲线不对称性的分析.  , doi: 10.7498/aps.64.034206
    [12] 沈红霞, 吴国祯, 王培杰. (R)-1,3丁二醇的手性不对称性:微分键极化率的研究.  , doi: 10.7498/aps.62.153301
    [13] 黎航, 蒲昱东, 景龙飞, 林雉伟, 陈伯伦, 蒋炜, 周近宇, 黄天晅, 张海鹰, 于瑞珍, 张继彦, 缪文勇, 郑志坚, 曹柱荣, 杨家敏, 刘慎业, 江少恩, 丁永坤, 况龙钰, 胡广月, 郑坚. 间接驱动的内爆不对称性随腔长和时间变化的研究.  , doi: 10.7498/aps.62.225204
    [14] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析(Ⅱ).  , doi: 10.7498/aps.61.150503
    [15] 申永军, 杨绍普, 邢海军. 含分数阶微分的线性单自由度振子的动力学分析.  , doi: 10.7498/aps.61.110505
    [16] 张丽春, 胡双启, 李怀繁, 赵 仁. 轴对称黑洞的量子统计熵.  , doi: 10.7498/aps.57.3328
    [17] 王永龙, 李子平, 许长谭. 组合Bose场的分数自旋和分数统计性.  , doi: 10.7498/aps.55.2149
    [18] 金奎娟, 潘少华, 杨国桢. 量子阱中电子-LO声子相互作用引起共振喇曼散射的不对称线形.  , doi: 10.7498/aps.44.299
    [19] 陈启洲, 胡宁. 奇异粒子衰变的上下不对称问题.  , doi: 10.7498/aps.20.374
    [20] 胡宁. Λ和∑粒子衰变的上下不对称性.  , doi: 10.7498/aps.17.315
计量
  • 文章访问数:  2697
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 上网日期:  2022-03-24

/

返回文章
返回
Baidu
map