搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

ENSO气温关联网络结构特征差异及成因分析

胡恒儒 龚志强 王健 乔盼节 刘莉 封国林

引用本文:
Citation:

ENSO气温关联网络结构特征差异及成因分析

胡恒儒, 龚志强, 王健, 乔盼节, 刘莉, 封国林

Analysis of structural differences and causes of ENSO temperature network

Hu Heng-Ru, Gong Zhi-Qiang, Wang Jian, Qiao Pan-Jie, Liu Li, Feng Guo-Lin
PDF
HTML
导出引用
  • 基于全球地表气温资料, 分别构建了El Niño和La Niña事件对应的全球气温关联网络, 并分析网络结构特征的差异, 探究可能的成因. 结果表明, 与La Niña事件气温网络(简称La Niña网络)相比, El Niño事件气温网络(简称El Niño网络)中格点温度序列间的相关性减弱, 气温网络的连通度显著降低, 连通性下降, 在热带和南温带区域连通性变化尤为显著. 赤道东太平洋、赤道西太平洋、赤道印度洋和赤道大西洋的网络连通度相对较大, 在El Niño网络中的减少异常明显, 是导致两类网络结构特征差异性的4块关键区域. 在此基础上初步探讨了两类网络特征差异的原因, 即随着Niño3.4区域的海温升高, 赤道东太平洋、赤道印度洋等区域海温升高, 对外长波辐射加强, 对流活动增加, 低纬度与中纬度区域的相互作用增强, 南北温带气温变化的方差加大, 造成关键区格点气温序列与全球其他地区的相关性减弱, 全球格点气温网络连通性下降.
    Based on the global surface temperature data, the global temperature correlation networks corresponding to El Niño and La Niña events are constructed respectively, and the differences in their effects on the network topological structure properties are analyzed. The results show that compared with the La Niña temperature network, the correlation between grid temperature series in El Niño temperature network is weakened, and the connectivity of the network is significantly reduced, especially in the tropical region and the southern temperate region. The network connectivity degree of equatorial eastern Pacific, equatorial western Pacific, equatorial Indian Ocean and equatorial Atlantic Ocean are relatively large, and the decrease in El Niño network is notable. They are also the four key regions leading to the differences of the structural characteristics of the two types of network. On this basis, the reason for the difference between the two types of network characteristics is preliminarily discussed. With the increase of SST in Niño3.4 region, the SST in equatorial eastern Pacific, equatorial Indian Ocean and other areas rise, which strengthenes outgoing long wave radiation and convection activities, and the interaction between low latitude and mid-latitude areas, and the variance of air temperature changes in the north and south temperate regions increase. As a result, the correlation between the temperature series of the four key regions and the rest of the world is weakened, therefore the connectivity of the global grid temperature network is reduced.
      通信作者: 龚志强, gongzq@cma.gov.cn
    • 基金项目: 国家重点研发计划(批准号: 2018YFA0606301)和国家自然科学基金(批准号: 42075057, 41875100)资助的课题
      Corresponding author: Gong Zhi-Qiang, gongzq@cma.gov.cn
    • Funds: Project supported by the National Key R&D Program of China (Grant No. 2018YFA0606301) and the National Natural Science Foundation of China (Grant Nos. 42075057, 41875100)
    [1]

    Timmermann A, An S I, Kug J S, Jin F F, Cai W J, Capotondi A, Cobb K M, Lengaigne M, McPhaden M J, Stuecker M F, Stein K, Wittenberg A T, Yun K S, Bayr T, Chen H C, Chikamoto Y, Dewitte B, Dommenget D, Grothe P, Guilyardi E, Ham Y G, Hayashi M, Ineson S, Kang D Y, Kim S Y, Kim W M, Lee J Y, Li T, Luo J J, McGregor S, Planton Y, Power S, Rashid H, Ren H L, Santoso A, Takahashi K, Todd A, Wang G, Wang G, Xie R, Yang W H, Yeh S W, Yoon J H, Zeller E, Zhang X B 2018 Nature 559 535Google Scholar

    [2]

    Michael J M, Stephen E Z, Michael H G 2006 Science 314 1740Google Scholar

    [3]

    Jia X, Lin H, Derome J 2009 Clim. Dyn. 32 495Google Scholar

    [4]

    Xie S P 1998 J. Clim. 11 189

    [5]

    Huang R, Zhang R, Yan B 2001 Sci. China, Ser. D Earth Sci. 44 1089Google Scholar

    [6]

    Wang L, Chen W, Huang R 2008 Geophys. Res. Lett. 35 L20702Google Scholar

    [7]

    Lian Y, Shen B, Li S, Zhao B, Gao Z, Liu G, Liu P, Cao L 2013 Adv. Atmos. Sci. 30 193Google Scholar

    [8]

    Li J P, Sun C, Ding R Q 2018 Decadal Coupled Ocean–Atmosphere Interaction in North Atlantic and Global Warming Hiatus//Beer T, Li J P, Alverson K Global Change and Future Earth: The Geoscience Perspective (Cambridge: Cambridge University Press) pp131–143

    [9]

    Wang G L, Tsonis A A 2009 Chin. Phys. B 18 5091Google Scholar

    [10]

    Boers N, Goswami B, Rheinwalt A, Bookhagen B, Hoskins B, Kurths J 2019 Nature 566 373Google Scholar

    [11]

    Fang J Q, Bi Q, Li Y 2007 Front. Phys. China 2 109Google Scholar

    [12]

    Nocke T, Buschmann S, Donges J F, Marwan N, Schulz H J, Tominski C 2015 Nonlinear Processes Geophys. 22 545Google Scholar

    [13]

    Fu Z T, Li Q I, Yuan N M, Yao Z H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 83Google Scholar

    [14]

    Fu Z T, Shi L, Xie F H, Piao L 2016 Physica A 449 390Google Scholar

    [15]

    李建平, 丑纪范 2003 大气科学 27 653Google Scholar

    Li J P, Chou J F 2003 Chin. J. Atmos. Sci. 27 653Google Scholar

    [16]

    Yuan N M, Lu Z H 2019 Nat. Clim. Change 10 13

    [17]

    Tsonis A A, Roebber P J 2004 Physica A 333 497Google Scholar

    [18]

    Tsonis A A, Swanson K L 2008 Phys. Rev. Lett. 100 228502Google Scholar

    [19]

    Gong Z Q, Wang X J, Zhi R, Feng A X 2011 Chin. Phys. B 20 079201Google Scholar

    [20]

    龚志强, 周磊, 支蓉, 封国林 2008 57 5351Google Scholar

    Gong Z Q, Zhou L, Zhi R, Feng G L 2008 Acta Phys. Sin. 57 5351Google Scholar

    [21]

    龚志强 2009 博士学位论文 (兰州: 兰州大学)

    Gong Z Q 2009 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [22]

    Ludescher J, Gozolchiani A, Bogachev M I, Bunde A, Havlin S, Schellnhuber H J 2014 Proc. Natl. Acad. Sci. 111 2064

    [23]

    Ludescher Josef A G, Mikhail I B, Armin B, Shlomo H, Hans J S 2013 Proc. Natl. Acad. Sci. U.S.A. 110 11742Google Scholar

    [24]

    Yamasaki K, Gozolchiani A, Havlin S 2008 Phys. Rev. Lett. 100 228501Google Scholar

    [25]

    Radebach A, Donner R V, Runge J, Donges J F, Kurths J 2013 Phys. Rev. E 88 052807Google Scholar

    [26]

    Wiedermann M, Radebach A, Donges J F, Kurths J, Donner R V 2016 Geophys. Res. Lett. 43 7176Google Scholar

    [27]

    Lu Z H, Yuan N M, Chen L, Gong Z Q 2020 Geophys. Res. Lett. 47 e2019GL086533

    [28]

    Lu Z H, Yuan N M, Fu Z T 2016 Sci. Rep. 6 1Google Scholar

    [29]

    Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D 1996 Bull. Am. Meteorol. Soc. 77 437

    [30]

    Bollabas B 1985 Random Graphs (London: Academic Press) p20

    [31]

    Tsonis A A, Swanson K L, Roebber P J 2006 Bull. Am. Meteorol. Soc. 87 585Google Scholar

    [32]

    Robusto C C 1957 Am. Math. Mon. 64 38Google Scholar

    [33]

    Albert R, Barabási A L 2002 Rev. Mod. Phys. 74 47Google Scholar

  • 图 1  不同ENSO相位下格点气温序列相关系数概率分布, 其中shuffled表示对格点气温序列作了随机化处理

    Fig. 1.  Probability distribution of correlation coefficient of grid temperature series under different ENSO phases, where shuffle represents randomization of grid temperature.

    图 2  网络特征量空间分布 (a1), (a2)连通度; (b1), (b2)集聚系数; (c1), (c2)特征路径长度

    Fig. 2.  Spatial distribution of network characteristic quantity: (a1), (a2) Connectivity degree; (b1), (b2) agglomeration coefficient; (c1), (c2) characteristic path length.

    图 3  不同区域网路特征量的概率分布 (a1)−(a4)连通度; (b1)−(b4)连通距离; (c1)−(c4)集聚系数; (d1)−(d4)最短路径长度. 由上到下4行依次对应全球网络、北温带网络、热带网络和南温带网络

    Fig. 3.  Probability distribution of (a1)−(a4) connectivity degree, (b1)−(b4) connectivity distance, (c1)−(c4) agglomeration coefficient, and (d1)−(d4) shortest path length of different regional network characteristic quantities. From top to bottom, four rows correspond to the global network, the northern temperate network, the tropical network, and the southern temperate network.

    图 4  大洋关键区-全球气温关联网络连通度的空间分布图 (a1), (a2)大西洋关键区与全球相关; (b1), (b2)印度洋关键区与全球相关; (c1), (c2)赤道西太平洋关键区与全球相关; (d1), (d2)赤道东太平洋关键区与全球相关

    Fig. 4.  Spatial distribution of the connectivity between key regions of the ocean and global temperature network: (a1), (a2) Atlantic Ocean key region relevant to global; (b1), (b2) Indian Ocean key region relevant to global; (c1), (c2) equatorial western Pacific key region relevant to global; (d1), (d2) equatorial eastern Pacific key region relevant to global.

    图 5  大洋关键区-全球气温关联网络连通性的概率分布图 (a1)−(a4)连通度; (b1)−(b4)链路距离. 其中(a1), (a2)为大西洋关键区与全球相关, (b1), (b2)为印度洋关键区与全球相关, (c1), (c2)为赤道西太平洋关键区与全球相关, (d1), (d2)为赤道东太平洋关键区与全球相关

    Fig. 5.  Probability distribution of the connectivity between key regions of ocean and global temperature correlation network: (a1)−(a4) Connectivity degree; (b1)−(b4) link distance. Panels (a1), (a2) correspond to the key region of the Atlantic Ocean relevant to global, panels (b1), (b2) correspond to the key region of the Indian Ocean relevant to global, panels (c1), (c2) correspond to the key region of the equatorial western Pacific relevant to global, panels (d1), (d2) correspond to the key region of the equatorial eastern Pacific relevant to global.

    图 6  El Niño和La Niña事件对应的海温距平(等值线, 单位: ℃)和净长波辐射距平(填色部分, 单位: $ {\mathrm{W}/\mathrm{m}}^{2} $)空间分布图 (a) El Niño; (b) La Niña

    Fig. 6.  Spatial distribution diagram of SST anomaly (isolines, unit: ℃) and net long-wave radiation anomaly (color filling, unit: $ {\mathrm{W}/\mathrm{m}}^{2} $) corresponding to El Niño and La Niña events: (a) El Niño; (b) La Niña.

    图 7  各关键区海温距平((a1)−(a4))、长波辐射距平((b1)−(b4))和垂直速度距平((c1)−(c4))的概率分布  (a1)−(c1)赤道大西洋; (a2)−(c2)赤道印度洋; (a3)−(c3)赤道西太平洋; (a4)−(c4)赤道东太平洋

    Fig. 7.  Probability distribution of SST anomaly ((a1)−(a4)), long-wave radiation anomaly ((b1)−(b4)) and vertical velocity anomaly ((c1)−(c4)) in each key area: (a1)−(c1) Equatorial Atlantic Ocean; (a2)−(c2) equatorial Indian Ocean; (a3)−(c3) equatorial western Pacific; (a4)−(c4) equatorial eastern Pacific.

    图 8  排序后Niño 3.4区域冬半年的海温均值序列, 虚线内窗口宽度30 a, 滑动步长为1 a

    Fig. 8.  Sequence of mean SST of winter half year in Niño 3.4 region after sorting. The window width in the dashed line is 30 a, and the sliding step length is 1 a.

    图 9  全球气温关联网络结构特征量平均值随Niño3.4区域海温升高变化特征 (a) 连通度; (b) 连通距离; (c)特征路径长度

    Fig. 9.  Variation characteristics of the mean value of structural characteristics of global temperature correlation network with the rise of SST in Niño3.4 region: (a) Connectivity degree; (b) connectivity distance; (c) characteristic path length.

    图 10  大洋关键区域长波辐射、垂直速度场随Niño3.4指数升高的变化特征

    Fig. 10.  Variation characteristics of long wave radiation and vertical velocity fields in key regions of the ocean with Niño3.4 index increasing.

    图 11  南温带(30°S−65°S)和北温带(30°N−65°N)平均气温方差随Niño3.4区域海温升高的变化图

    Fig. 11.  Variance of mean temperature in the south and north temperate regions (30°S−65°S, 30°N−65°N) with the increase of SST in Niño3.4.

    表 1  连通度平均值与差异率

    Table 1.  Average connectivity and difference rate.

    ${ \widetilde {C}_{\mathrm{E}\mathrm{l}\;\mathrm{N}\mathrm{i}{\tilde {\rm{n} } }\mathrm{o} } }$${\widetilde {C}_{\mathrm{L}\mathrm{a}\;\mathrm{N}\mathrm{i}{\tilde {\rm{n} } }\mathrm{a} } }$差异率D
    全球0.0350.05555%
    北温带0.0240.0252%
    热带0.0570.09772%
    南温带0.0200.03363%
    下载: 导出CSV

    表 2  各大洋关键区的划分范围

    Table 2.  Range of key regions in the oceans.

    纬度经度
    赤道大西洋5°N—10°S40°W—10°E
    赤道印度洋10°N—5°S60°E—100°E
    赤道西太平洋20°N—5°N110°E—150°E
    赤道东太平洋5°N—5°S170°W—120°W
    下载: 导出CSV
    Baidu
  • [1]

    Timmermann A, An S I, Kug J S, Jin F F, Cai W J, Capotondi A, Cobb K M, Lengaigne M, McPhaden M J, Stuecker M F, Stein K, Wittenberg A T, Yun K S, Bayr T, Chen H C, Chikamoto Y, Dewitte B, Dommenget D, Grothe P, Guilyardi E, Ham Y G, Hayashi M, Ineson S, Kang D Y, Kim S Y, Kim W M, Lee J Y, Li T, Luo J J, McGregor S, Planton Y, Power S, Rashid H, Ren H L, Santoso A, Takahashi K, Todd A, Wang G, Wang G, Xie R, Yang W H, Yeh S W, Yoon J H, Zeller E, Zhang X B 2018 Nature 559 535Google Scholar

    [2]

    Michael J M, Stephen E Z, Michael H G 2006 Science 314 1740Google Scholar

    [3]

    Jia X, Lin H, Derome J 2009 Clim. Dyn. 32 495Google Scholar

    [4]

    Xie S P 1998 J. Clim. 11 189

    [5]

    Huang R, Zhang R, Yan B 2001 Sci. China, Ser. D Earth Sci. 44 1089Google Scholar

    [6]

    Wang L, Chen W, Huang R 2008 Geophys. Res. Lett. 35 L20702Google Scholar

    [7]

    Lian Y, Shen B, Li S, Zhao B, Gao Z, Liu G, Liu P, Cao L 2013 Adv. Atmos. Sci. 30 193Google Scholar

    [8]

    Li J P, Sun C, Ding R Q 2018 Decadal Coupled Ocean–Atmosphere Interaction in North Atlantic and Global Warming Hiatus//Beer T, Li J P, Alverson K Global Change and Future Earth: The Geoscience Perspective (Cambridge: Cambridge University Press) pp131–143

    [9]

    Wang G L, Tsonis A A 2009 Chin. Phys. B 18 5091Google Scholar

    [10]

    Boers N, Goswami B, Rheinwalt A, Bookhagen B, Hoskins B, Kurths J 2019 Nature 566 373Google Scholar

    [11]

    Fang J Q, Bi Q, Li Y 2007 Front. Phys. China 2 109Google Scholar

    [12]

    Nocke T, Buschmann S, Donges J F, Marwan N, Schulz H J, Tominski C 2015 Nonlinear Processes Geophys. 22 545Google Scholar

    [13]

    Fu Z T, Li Q I, Yuan N M, Yao Z H 2014 Commun. Nonlinear Sci. Numer. Simul. 19 83Google Scholar

    [14]

    Fu Z T, Shi L, Xie F H, Piao L 2016 Physica A 449 390Google Scholar

    [15]

    李建平, 丑纪范 2003 大气科学 27 653Google Scholar

    Li J P, Chou J F 2003 Chin. J. Atmos. Sci. 27 653Google Scholar

    [16]

    Yuan N M, Lu Z H 2019 Nat. Clim. Change 10 13

    [17]

    Tsonis A A, Roebber P J 2004 Physica A 333 497Google Scholar

    [18]

    Tsonis A A, Swanson K L 2008 Phys. Rev. Lett. 100 228502Google Scholar

    [19]

    Gong Z Q, Wang X J, Zhi R, Feng A X 2011 Chin. Phys. B 20 079201Google Scholar

    [20]

    龚志强, 周磊, 支蓉, 封国林 2008 57 5351Google Scholar

    Gong Z Q, Zhou L, Zhi R, Feng G L 2008 Acta Phys. Sin. 57 5351Google Scholar

    [21]

    龚志强 2009 博士学位论文 (兰州: 兰州大学)

    Gong Z Q 2009 Ph. D. Dissertation (Lanzhou: Lanzhou University) (in Chinese)

    [22]

    Ludescher J, Gozolchiani A, Bogachev M I, Bunde A, Havlin S, Schellnhuber H J 2014 Proc. Natl. Acad. Sci. 111 2064

    [23]

    Ludescher Josef A G, Mikhail I B, Armin B, Shlomo H, Hans J S 2013 Proc. Natl. Acad. Sci. U.S.A. 110 11742Google Scholar

    [24]

    Yamasaki K, Gozolchiani A, Havlin S 2008 Phys. Rev. Lett. 100 228501Google Scholar

    [25]

    Radebach A, Donner R V, Runge J, Donges J F, Kurths J 2013 Phys. Rev. E 88 052807Google Scholar

    [26]

    Wiedermann M, Radebach A, Donges J F, Kurths J, Donner R V 2016 Geophys. Res. Lett. 43 7176Google Scholar

    [27]

    Lu Z H, Yuan N M, Chen L, Gong Z Q 2020 Geophys. Res. Lett. 47 e2019GL086533

    [28]

    Lu Z H, Yuan N M, Fu Z T 2016 Sci. Rep. 6 1Google Scholar

    [29]

    Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo K C, Ropelewski C, Wang J, Leetmaa A, Reynolds R, Jenne R, Joseph D 1996 Bull. Am. Meteorol. Soc. 77 437

    [30]

    Bollabas B 1985 Random Graphs (London: Academic Press) p20

    [31]

    Tsonis A A, Swanson K L, Roebber P J 2006 Bull. Am. Meteorol. Soc. 87 585Google Scholar

    [32]

    Robusto C C 1957 Am. Math. Mon. 64 38Google Scholar

    [33]

    Albert R, Barabási A L 2002 Rev. Mod. Phys. 74 47Google Scholar

  • [1] 李惟嘉, 申晓红, 李亚安. 一种无偏差的多通道多尺度样本熵算法.  , 2024, 73(11): 110502. doi: 10.7498/aps.73.20231133
    [2] 黄晓东, 贺彬烜, 宋震, 弭元元, 屈支林, 胡岗. 心律失常的多尺度建模、计算与动力学理论进展综述.  , 2024, 73(21): 218702. doi: 10.7498/aps.73.20240977
    [3] 宋玉萍, 倪静. 网络集聚性对节点中心性指标的准确性影响.  , 2016, 65(2): 028901. doi: 10.7498/aps.65.028901
    [4] 党小宇, 李洪涛, 袁泽世, 胡文. 基于数模混合的混沌映射实现.  , 2015, 64(16): 160501. doi: 10.7498/aps.64.160501
    [5] 于洁, 郭霞生, 屠娟, 章东. 超声造影剂微泡非线性动力学响应的机理及相关应用.  , 2015, 64(9): 094306. doi: 10.7498/aps.64.094306
    [6] 刘岩, 张文明, 仲作阳, 彭志科, 孟光. 光梯度力驱动纳谐振器的非线性动力学特性研究.  , 2014, 63(2): 026201. doi: 10.7498/aps.63.026201
    [7] 雷鹏飞, 张家忠, 王琢璞, 陈嘉辉. 非定常瞬态流动过程中的Lagrangian拟序结构与物质输运作用.  , 2014, 63(8): 084702. doi: 10.7498/aps.63.084702
    [8] 廖志贤, 罗晓曙. 基于小世界网络模型的光伏微网系统同步方法研究.  , 2014, 63(23): 230502. doi: 10.7498/aps.63.230502
    [9] 林万涛, 林一骅, 石兰芳, 莫嘉琪. 一类厄尔尼诺-南方涛动耦合振子动力学模型的震荡近似解.  , 2013, 62(14): 140202. doi: 10.7498/aps.62.140202
    [10] 余洋, 米增强. 机械弹性储能机组储能过程非线性动力学模型与混沌特性.  , 2013, 62(3): 038403. doi: 10.7498/aps.62.038403
    [11] 刘建国, 任卓明, 郭强, 汪秉宏. 复杂网络中节点重要性排序的研究进展.  , 2013, 62(17): 178901. doi: 10.7498/aps.62.178901
    [12] 林万涛, 陈丽华, 欧阳成, 莫嘉琪. 厄尔尼诺/拉尼娜-南方涛动非线性扰动模型孤子的渐近解法.  , 2012, 61(8): 080204. doi: 10.7498/aps.61.080204
    [13] 杨浦, 郑志刚. 基于动力学同步的复杂网络结构识别速度研究.  , 2012, 61(12): 120508. doi: 10.7498/aps.61.120508
    [14] 王从庆, 吴鹏飞, 周鑫. 基于最小关节力矩优化的自由浮动空间刚柔耦合机械臂混沌动力学建模与控制.  , 2012, 61(23): 230503. doi: 10.7498/aps.61.230503
    [15] 郑安杰, 吴正茂, 邓涛, 李小坚, 夏光琼. 偏振保持光反馈下1550 nm垂直腔面发射激光器的非线性动力学特性研究.  , 2012, 61(23): 234203. doi: 10.7498/aps.61.234203
    [16] 吕玉祥, 孙帅, 杨星. 基于光注入Fabry-Perot半导体激光器实现同步全光分路时钟提取与波长转换.  , 2009, 58(4): 2467-2475. doi: 10.7498/aps.58.2467
    [17] 牛生晓, 张明江, 安 义, 贺虎成, 李静霞, 王云才. 外光注入半导体激光器实现重复速率可调全光时钟分频.  , 2008, 57(11): 6998-7004. doi: 10.7498/aps.57.6998
    [18] 盛正卯, 王 庸, 马 健, 郑思波. 静电波对磁化等离子体的共振加热的理论及数值模拟研究.  , 2006, 55(3): 1301-1306. doi: 10.7498/aps.55.1301
    [19] 李新霞, 唐 翌. 阻尼作用下一维体系热传导性质的研究.  , 2006, 55(12): 6556-6561. doi: 10.7498/aps.55.6556
    [20] 姜可宇, 蔡志明. 变尺度概率净化法的优化.  , 2005, 54(10): 4596-4601. doi: 10.7498/aps.54.4596
计量
  • 文章访问数:  4756
  • PDF下载量:  74
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-29
  • 修回日期:  2021-06-19
  • 上网日期:  2021-08-30
  • 刊出日期:  2021-12-20

/

返回文章
返回
Baidu
map