搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于格兰杰因果网络的中美贸易战对上证行业冲击的研究

赵军产 黄麒安 吴晓群 肖磊

引用本文:
Citation:

基于格兰杰因果网络的中美贸易战对上证行业冲击的研究

赵军产, 黄麒安, 吴晓群, 肖磊

The impact of trade war on Shanghai stock exchange industry based on Granger causality network

Zhao Jun-Chan, Huang Qi-An, Wu Xiao-Qun, Xiao Lei
PDF
HTML
导出引用
  • 中美贸易战对行业冲击是普遍关注的问题, 本文选取2016年8月—2019年10月的上证行业指数, 构建了格兰杰因果关系网络, 然后结合事件分析法对风险传播模型的参数进行估计, 最后利用蒙特卡罗算法模拟行业受到贸易战冲击后金融风险传播情况, 并计算贸易战发生前后的上证股市金融网络风险传播的基本再生数. 研究发现: 第一, 贸易战明显改变了上证行业关系结构, 行业指数之间联系变得更为紧密; 第二, 贸易战发生初期, 受美国加征关税影响, 上证股市感染节点数量迅速增加, 并且感染规模会在第10—15个交易日内达到峰值, 感染节点数量大约在第25个交易日后开始趋于平缓, 市场逐渐恢复; 第三, 基本再生数计算结果表明, 上证股市在贸易战发生初期金融风险传播较快, 上证股市容易产生“同涨同跌”的现象.
    The impact of the China-US trade war on the industry is a common concern. Industries in the stock market have a high degree of correlation that the drastic fluctuation of stock prices of one industry may cause related industry stock price fluctuating, and even may influence the whole financial market through chain reaction. Therefore, it is helpful for us to understand the impact of the China-Us trade war on Shanghai stock market and the internal relations among the different industry sectors by analyzing how the financial shock spreads in the stock market.However, there are still several essential problems to be solved. First, previous work mainly employed the mean field theory to study the diffusion of financial crisis in the stock market. Although this method can reflect the diffusion of financial crisis in the stock market as a whole, it is not accurate enough to explain the relationship among industry sectors. Second, the previous work mainly used numerical simulations to study the dynamic properties of the spread model, thus there is necessity to demonstrate whether numerical simulations can reflect the real situation of stock market.To solve these two problems, this paper proposes a method combining parameter estimation techniques and the Monte Carlo simulation algorithm based on the disease spreading model. By using this method, we select the Shanghai stock exchange industry indexes from 2016 to 2019, construct the Granger causality network, estimate the parameters of the risk spreading model using the event study methodology, and finally simulate the diffusion of financial shocks. The results show that: firstly, the trade war has significantly changed the structure of Shanghai stock exchange industries, and industry indexes have become more closely related. Secondly, after the trade war, the financial shock will cause the number of infected nodes in Shanghai stock market increasing rapidly in the initial stage, and the scale of infection will reach the peak within the 10th to 15th trading days. The number of susceptible infections begins to slow down on about the 25th trading day, which means that the infection caused by financial shock has ended and the market is gradually recovering. Thirdly, the calculation results of the basic regeneration number show that the risk caused by financial shock is easy to spread in the Shanghai stock market after the trade war, and the phenomenon of "simultaneously rise and fall" of Shanghai stock market easily emerges.
      通信作者: 肖磊, xiaoleiyouhua@sina.com
    • 基金项目: 国家社会科学基金(批准号: 18BTJ025)资助的课题
      Corresponding author: Xiao Lei, xiaoleiyouhua@sina.com
    • Funds: Project supported by the National Social Science Foundation of China (Grant No. 18BTJ025)
    [1]

    Fenn D J, Porter M A, Williams S, Mcdonald M, Johnson N F, Jones N S 2011 Phys. Rev. E 84 026109

    [2]

    韩华, 吴翎燕, 宋宁宁 2014 63 138901Google Scholar

    Han H, Wu L Y, Song N N 2014 Acta Phys. Sin. 63 138901Google Scholar

    [3]

    于恩峰 2019 中国证券期货 03 9Google Scholar

    Yu E F 2019 Securities & Futures of China 03 9Google Scholar

    [4]

    高湘昀, 安海忠, 方伟 2012 61 098902Google Scholar

    Gao X Y, An H Z, Fang W 2012 Acta Phys. Sin. 61 098902Google Scholar

    [5]

    Buccheri G, Marmi S, Mantegna R N 2013 Phys. Rev. E 88 012806Google Scholar

    [6]

    Kazemilari M, Djauhari M A 2015 Physica A 429 62Google Scholar

    [7]

    邱路, 贾天明, 杨会杰 2016 65 198901Google Scholar

    Qiu L, Jia T M, Yang H J 2016 Acta Phys. Sin. 65 198901Google Scholar

    [8]

    Landesberger T, Diel S, Bremm S, Fellner D 2015 Information Visualization 14 93Google Scholar

    [9]

    Liu C, Arunkumar N 2019 Cluster Computing 22 4307Google Scholar

    [10]

    Gong C, Tang P, Wang Y 2019 Physica A 535 122351Google Scholar

    [11]

    Wang H, Li S 2020 Physica A 541 123325Google Scholar

    [12]

    Blinowska K, Ku R, Kamiński M 2004 Phys. Rev. E 22 050902

    [13]

    Výrost T, Štefan L, Baumöh E 2015 Physica A 427 262Google Scholar

    [14]

    Zhang L, Zhong G, Wu Y 2010 J. Biomed. Sci. Eng. 3 848Google Scholar

    [15]

    Xun W, Wang X Y, Liu X Z 2015 Chin. Phys. B 5 163Google Scholar

    [16]

    Kempe D, Jon K, éva T 2003 Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Washington, USA, August 24−27, 2003 p137

    [17]

    Liu Q M, Deng C S, Sun M C 2014 Physica A 410 79Google Scholar

    [18]

    Liu Q M, Li B C, Sun M C 2017 Math. Prob. Eng. 2017 6376502Google Scholar

    [19]

    Chen L J, Sun J T 2014 Physica A 410 196Google Scholar

    [20]

    靳祯, 孙桂全, 刘茂省 2014 网络传染病动力学建模与分析 (第一版) (北京: 科学出版社) 第179−184页

    Jin Z, Sun G Q, Liu M S 2014 Dynamic Modeling and Analysis of Betwork Infectious Diseases (1st Ed.) (Beijing: Science Press) pp179−184 (in Chinese)

    [21]

    胡志浩, 李晓花 2017 财贸经济 38 101

    Hu Z H, Li X H 2017 Finance & Trade Economics 38 101

    [22]

    Youssef M, Scoglio C 2011 J. Theor. Biol. 283 136Google Scholar

    [23]

    崔玉美, 陈姗姗, 傅新楚 2017 复杂系统与复杂性科学 14 14Google Scholar

    Cui Y M, Chen S S, Fu X C 2017 Complex Syst. Complexity Sci. 14 14Google Scholar

    [24]

    Tanimoto S 2011 Computer Science 1103 1680

    [25]

    Wang S S, Xu K, Zhang H 2019 Pacific-Basin Finance Journal 57 101174Google Scholar

    [26]

    Zhu L, Li H M, Zheng D Z 2020 The Chinese Economy 53 246Google Scholar

  • 图 1  上证股市格兰杰因果网络图 (a)贸易战开始前网络; (b)贸易战开始后网络

    Fig. 1.  Granger causality network of Shanghai Stock Market: (a) Before trade war; (b) after trade war

    图 2  标准化后的行业综合指数

    Fig. 2.  Standardized industry composite index

    图 3  参数拟合 (a)片段1拟合图; (b)片段2拟合图; (c)片段3拟合图; (d)片段4拟合图; (e)片段5拟合图; (f)片段6拟合图. 其中实线表示实际曲线, 星号表示拟合曲线

    Fig. 3.  Parameter fitting: (a) Segment 1 fitting plot; (b) segment 2 fitting plot; (c) segment 3 fitting plot; (d) segment 4 fitting plot; (e) segment 5 fitting plot; (f) segment 6 fitting plot. Solid line represents actual curve, asterisk represents fitting curve.

    图 4  有向网络下的模拟传染扩散 (a), (d)贸易战发生前后生物医药类行业为传染源的扩散图; (b), (e)贸易战发生前后家机械设备类业为传染源的扩散图; (c), (f)贸易战发生前后钢铁和工业金属行业为传染源的扩散图

    Fig. 4.  Simulation of contagion diffusion in directed networks: (a), (d) Diffusion charts of biomedicine before and after the trade war; (b), (e) diffusion charts of mechanical equipment industry before and after the trade war; (c), (f) diffusion charts of steel and industrial metal industries before and after the trade war

    表 1  网络拓扑结构指标

    Table 1.  Network topology index

    边数 平均度 网络直径 网络密度 平均路径长度
    贸易战
    开始前
    674 6.544 6 0.064 2.56
    贸易战
    开始后
    1500 14.563 4 0.143 1.97
    下载: 导出CSV

    表 2  SIR状态划分表汇总

    Table 2.  Summary table of SIR status

    时间/日 片段1 片段2 片段3
    S I R S I R S I R
    1 91 12 0 95 8 0 93 10 0
    2 91 12 0 95 8 0 87 16 0
    3 90 13 0 95 7 1 77 26 0
    4 86 17 0 95 7 1 76 26 1
    5 86 17 0 95 7 1 76 22 5
    6 86 8 9 78 24 1 76 22 5
    7 86 8 9 78 23 2 76 20 7
    8 86 5 12 78 20 5 76 18 9
    9 86 4 13 78 17 8 76 18 9
    10 86 4 13 78 6 19 76 18 9
    11 86 4 13 78 6 19 76 10 17
    12 86 3 14 78 5 20 76 9 18
    13 86 3 14 78 5 20 76 9 18
    14 86 1 16 78 5 20 76 8 19
    15 86 1 16 78 5 20 76 8 19
    16 86 1 16 78 4 21 76 6 21
    17 86 1 16 78 2 23 76 6 21
    18 86 1 16 78 2 23 76 6 21
    19 86 1 16 78 2 23 76 4 23
    20 86 1 16 78 2 23 76 4 23
    21 86 1 16
    22 86 0 17
    时间/日 片段4 片段5 片段6
    S I R S I R S I R
    1 84 19 0 83 20 0 100 3 0
    2 77 26 0 55 48 0 98 4 1
    3 66 36 1 42 59 2 97 5 1
    4 26 76 1 33 68 2 97 5 1
    5 21 81 1 22 79 2 96 6 1
    6 14 86 3 21 79 3 95 6 2
    7 3 97 3 10 90 3 92 9 2
    8 3 96 4 10 89 4 91 10 2
    9 3 94 6 10 59 34 73 28 2
    10 3 92 8 10 59 34 73 27 3
    11 3 82 18 10 58 35 73 24 6
    12 3 79 21 10 58 35 73 24 6
    13 3 60 40 9 59 35 73 23 7
    14 3 55 45 8 60 35 73 21 9
    15 3 53 47 8 60 35 73 18 12
    16 3 45 55 8 58 37 72 18 13
    17 3 45 55 8 57 38 69 21 13
    18 3 42 58 8 40 55 59 31 13
    下载: 导出CSV

    表 2 (续)  SIR状态划分表汇总

    Table 2 (续).  Summary table of SIR status

    时间/日 片段4 片段5 片段6
    S I R S I R S I R
    19 3 36 64 8 36 59 38 52 13
    20 3 36 64 8 36 59 26 64 13
    21 3 34 66 7 37 59 22 67 14
    22 3 31 69 7 37 59 22 66 15
    23 3 28 72 7 36 60 21 67 15
    24 7 29 67 21 66 16
    25 7 15 81 21 66 16
    26 7 14 82 21 66 16
    27 7 12 84 21 66 16
    28 21 65 17
    29 21 51 31
    30 21 48 34
    31 21 47 35
    32 21 47 35
    33 21 45 37
    34 21 43 39
    下载: 导出CSV

    表 3  上证股市传染基本再生数

    Table 3.  The basic recurrence number of contagion in Shanghai Stock Market

    $\langle kl\rangle$ $\langle k\rangle$ $\hat{\bar{\lambda}}$ $\hat{\bar{\mu}}$ $R_0$
    贸易战开始前 67.2913 6.5437 0.0230 0.1677 1.4104
    贸易战开始后 290.1359 14.5631 0.0415 0.0479 17.2608
    下载: 导出CSV
    Baidu
  • [1]

    Fenn D J, Porter M A, Williams S, Mcdonald M, Johnson N F, Jones N S 2011 Phys. Rev. E 84 026109

    [2]

    韩华, 吴翎燕, 宋宁宁 2014 63 138901Google Scholar

    Han H, Wu L Y, Song N N 2014 Acta Phys. Sin. 63 138901Google Scholar

    [3]

    于恩峰 2019 中国证券期货 03 9Google Scholar

    Yu E F 2019 Securities & Futures of China 03 9Google Scholar

    [4]

    高湘昀, 安海忠, 方伟 2012 61 098902Google Scholar

    Gao X Y, An H Z, Fang W 2012 Acta Phys. Sin. 61 098902Google Scholar

    [5]

    Buccheri G, Marmi S, Mantegna R N 2013 Phys. Rev. E 88 012806Google Scholar

    [6]

    Kazemilari M, Djauhari M A 2015 Physica A 429 62Google Scholar

    [7]

    邱路, 贾天明, 杨会杰 2016 65 198901Google Scholar

    Qiu L, Jia T M, Yang H J 2016 Acta Phys. Sin. 65 198901Google Scholar

    [8]

    Landesberger T, Diel S, Bremm S, Fellner D 2015 Information Visualization 14 93Google Scholar

    [9]

    Liu C, Arunkumar N 2019 Cluster Computing 22 4307Google Scholar

    [10]

    Gong C, Tang P, Wang Y 2019 Physica A 535 122351Google Scholar

    [11]

    Wang H, Li S 2020 Physica A 541 123325Google Scholar

    [12]

    Blinowska K, Ku R, Kamiński M 2004 Phys. Rev. E 22 050902

    [13]

    Výrost T, Štefan L, Baumöh E 2015 Physica A 427 262Google Scholar

    [14]

    Zhang L, Zhong G, Wu Y 2010 J. Biomed. Sci. Eng. 3 848Google Scholar

    [15]

    Xun W, Wang X Y, Liu X Z 2015 Chin. Phys. B 5 163Google Scholar

    [16]

    Kempe D, Jon K, éva T 2003 Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining Washington, USA, August 24−27, 2003 p137

    [17]

    Liu Q M, Deng C S, Sun M C 2014 Physica A 410 79Google Scholar

    [18]

    Liu Q M, Li B C, Sun M C 2017 Math. Prob. Eng. 2017 6376502Google Scholar

    [19]

    Chen L J, Sun J T 2014 Physica A 410 196Google Scholar

    [20]

    靳祯, 孙桂全, 刘茂省 2014 网络传染病动力学建模与分析 (第一版) (北京: 科学出版社) 第179−184页

    Jin Z, Sun G Q, Liu M S 2014 Dynamic Modeling and Analysis of Betwork Infectious Diseases (1st Ed.) (Beijing: Science Press) pp179−184 (in Chinese)

    [21]

    胡志浩, 李晓花 2017 财贸经济 38 101

    Hu Z H, Li X H 2017 Finance & Trade Economics 38 101

    [22]

    Youssef M, Scoglio C 2011 J. Theor. Biol. 283 136Google Scholar

    [23]

    崔玉美, 陈姗姗, 傅新楚 2017 复杂系统与复杂性科学 14 14Google Scholar

    Cui Y M, Chen S S, Fu X C 2017 Complex Syst. Complexity Sci. 14 14Google Scholar

    [24]

    Tanimoto S 2011 Computer Science 1103 1680

    [25]

    Wang S S, Xu K, Zhang H 2019 Pacific-Basin Finance Journal 57 101174Google Scholar

    [26]

    Zhu L, Li H M, Zheng D Z 2020 The Chinese Economy 53 246Google Scholar

  • [1] 许霄琰. 强关联电子体系的量子蒙特卡罗计算.  , 2022, 71(12): 127101. doi: 10.7498/aps.71.20220079
    [2] 邓力, 李瑞, 王鑫, 付元光. 特征γ射线谱分析的蒙特卡罗模拟技术.  , 2020, 69(11): 112801. doi: 10.7498/aps.69.20200279
    [3] 许育培, 李树. 热辐射输运问题的高效蒙特卡罗模拟方法.  , 2020, 69(2): 029501. doi: 10.7498/aps.69.20191315
    [4] 何长春, 廖继海, 杨小宝. 平面团簇稳定结构的蒙特卡罗树搜索.  , 2017, 66(16): 163601. doi: 10.7498/aps.66.163601
    [5] 上官丹骅, 邓力, 李刚, 张宝印, 马彦, 付元光, 李瑞, 胡小利. 蒙特卡罗临界计算全局计数效率新算法研究.  , 2016, 65(6): 062801. doi: 10.7498/aps.65.062801
    [6] 邱路, 贾天明, 杨会杰. 差分网络研究金融危机对行业的冲击.  , 2016, 65(19): 198901. doi: 10.7498/aps.65.198901
    [7] 孙贤明, 肖赛, 王海华, 万隆, 申晋. 高斯光束在双层云中传输的蒙特卡罗模拟.  , 2015, 64(18): 184204. doi: 10.7498/aps.64.184204
    [8] 李树, 蓝可, 赖东显, 刘杰. 球形黑腔辐射输运问题的蒙特卡罗模拟.  , 2015, 64(14): 145203. doi: 10.7498/aps.64.145203
    [9] 陈锟, 邓友金. 用量子蒙特卡罗方法研究二维超流-莫特绝缘体相变点附近的希格斯粒子.  , 2015, 64(18): 180201. doi: 10.7498/aps.64.180201
    [10] 上官丹骅, 李刚, 邓力, 张宝印, 李瑞, 付元光. 反应堆蒙特卡罗临界模拟中均匀裂变源算法的改进.  , 2015, 64(5): 052801. doi: 10.7498/aps.64.052801
    [11] 林舒, 闫杨娇, 李永东, 刘纯亮. 微波器件微放电阈值计算的蒙特卡罗方法研究.  , 2014, 63(14): 147902. doi: 10.7498/aps.63.147902
    [12] 李晶, 赵拥军, 李冬海. 基于马尔科夫链蒙特卡罗的时延估计算法.  , 2014, 63(13): 130701. doi: 10.7498/aps.63.130701
    [13] 李树, 李刚, 田东风, 邓力. 热辐射输运问题的隐式蒙特卡罗方法求解.  , 2013, 62(24): 249501. doi: 10.7498/aps.62.249501
    [14] 杨超, 龙继东, 王平, 廖方燕, 夏蒙重, 刘腊群. 潘宁源放电的全三维电磁粒子模拟/蒙特卡罗碰撞数值算法研究.  , 2013, 62(20): 205207. doi: 10.7498/aps.62.205207
    [15] 付方正, 李明. 蒙特卡罗法计算无序激光器的阈值.  , 2009, 58(9): 6258-6263. doi: 10.7498/aps.58.6258
    [16] 鞠志萍, 曹午飞, 刘小伟. 质子散射角分布的蒙特卡罗模拟.  , 2009, 58(1): 174-177. doi: 10.7498/aps.58.174
    [17] 施 卫, 贾婉丽, 纪卫莉, 刘 锴. 光电导开关工作模式的蒙特卡罗模拟.  , 2007, 56(11): 6334-6339. doi: 10.7498/aps.56.6334
    [18] 孙贤明, 韩一平, 史小卫. 降雨融化层后向散射的蒙特卡罗仿真.  , 2007, 56(4): 2098-2105. doi: 10.7498/aps.56.2098
    [19] 郝樊华, 胡广春, 刘素萍, 龚 建, 向永春, 黄瑞良, 师学明, 伍 钧. 钚体源样品γ能谱计算的蒙特卡罗方法.  , 2005, 54(8): 3523-3529. doi: 10.7498/aps.54.3523
    [20] 潘正瑛, 陈建新, 吴士明, 霍裕昆. 多成分靶优先溅射的蒙特-卡罗计算.  , 1990, 39(2): 319-324. doi: 10.7498/aps.39.319
计量
  • 文章访问数:  4942
  • PDF下载量:  99
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-11
  • 修回日期:  2020-10-23
  • 上网日期:  2021-03-18
  • 刊出日期:  2021-04-05

/

返回文章
返回
Baidu
map