搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于量子游走的仲裁量子签名方案

冯艳艳 施荣华 石金晶 郭迎

引用本文:
Citation:

基于量子游走的仲裁量子签名方案

冯艳艳, 施荣华, 石金晶, 郭迎

Arbitrated quantum signature scheme based on quantum walks

Feng Yan-Yan, Shi Rong-Hua, Shi Jin-Jing, Guo Ying
PDF
HTML
导出引用
  • 基于量子游走的量子隐形传输模型, 提出了一种仲裁量子签名方案. 发送者编码要签名的信息在硬币态上, 并应用硬币态和位置态之间的条件相移算符产生用于量子隐形传输必需的纠缠态. 对生成的纠缠态测量可作为签名设计和信息恢复依据. 然后, 接收者依据来自发送者的测量结果测量其量子态, 进而验证签名的有效性和信息的真实性、完整性. 由于量子游走的应用, 本签名方案的初始化阶段不需要提前制备必须的纠缠态. 安全性分析表明方案满足不可抵赖、不可伪造和不可否认特性, 讨论和比较展示了键控链式受控非加密算法和随机数的使用可以抵抗已有方案中的抵赖和存在性伪造攻击. 此外, 量子游走已经被证明可以在多种不同的物理系统中和实验上实现, 因此本签名方案未来也许是可实现的.
    Quantum signature is quantum counterpart of classical digital signature, which has been widely applied to modern communication, such as electronic payment, electronic voting and electronic medical, owing to its great implication in ensuring the authenticity and the integrity of the message and the non-repudiation. Arbitrated quantum signature (AQS) is an important and practical type of quantum signature. The AQS algorithm is a symmetric key cryptography-based quantum signature algorithm, and its implementation requires the trusted arbitrator to be directly involved. In this paper, employing the key-controlled chained CNOT (KCCC) operation as the appropriate encryption (decryption) algorithm, we suggest an AQS scheme based on teleportation of quantum walks with two coins on a four-vertex cycle, which is used to transfer the message copy from the sender to the receiver. In light of the model of teleportation of quantum walks, the sender encodes the message to be signed into her or his coin state, and the necessary entangled states can be created as a result of the conditional shift between the coin state and the position state. The measurements performed on the generated entangled states are the bases of signature production and message recovery. Then according to the classical measurement results from the sender, the receiver performs the appropriate local unitary operations (i.e., Pauli operations) on his own coin state to recover the original message and further verifies the validity of the completed signature by using the appropriate verification algorithms under the aid of the trustworthy arbitrator. The suggested AQS scheme makes the following contributions: 1) the necessary entangled states for quantum teleportation of message copy do not need preparing in advance, and they can be produced automatically by the first step of quantum walks; 2) the scheme satisfies the features of non-repudiation, un-forgeability and non-disavowal due to the use of the KCCC operation; 3) the scheme may be achieved by linear optical elements such as beam splitters, wave plates, etc., because quantum walks have proven to be realizable in different physical systems and experiments.Analysis and discussion show that the proposed AQS scheme possesses the impossibility of disavowals by the signer and the receiver and impossibility of forgeries by anyone. Comparisons reveal that the designed AQS protocol is favorable. Furthermore, it provides an idea by employing the quantum computing model into quantum communication protocols with a possible improvement with respect to its favorable properties, for example, the automatic generation of entangled states via the first step of quantum walks on different models. In the near future, we will further investigate the production of entanglement by quantum walks and its applications with some improvements in designing the quantum communication protocols.
      通信作者: 石金晶, shijinjing@csu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61871407, 61572529, 61872390)、中南大学中央高校基本科研业务费专项基金(批准号: 2018zzts179)和湖南省自然科学基金(批准号:2017JJ3415)资助的课题.
      Corresponding author: Shi Jin-Jing, shijinjing@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871407, 61572529, 61872390), the Fundamental Research Funds for the Central Universities of Central South University, China (Grant No. 2018zzts179), and the Natural Science Foundation of Hunan Province, China (Grant No. 2017JJ3415).
    [1]

    Meijer H, Akl S 1981 ACM SIGCOMM Comp. Com. 11 37Google Scholar

    [2]

    Zeng G, Keitel C H 2002 Phys. Rev. A 65 042312Google Scholar

    [3]

    Nielsen M A, Chuang I, Grover L K 2002 Am. J. Phys. 70 558Google Scholar

    [4]

    Guo Y, Xie C L, Liao Q, Zhao W, Zeng G H, Huang D 2017 Phys. Rev. A 96 022320Google Scholar

    [5]

    Guo Y, Liao Q, Wang Y, Wang Y J, Huang D, Huang P, Zeng G H 2017 Phys. Rev. A 95 032304Google Scholar

    [6]

    Xu G, Chen X B, Dou Z, Yang Y X, Li Z 2015 Quantum Inf. Process. 14 2959Google Scholar

    [7]

    Chen X B, Sun Y R, Xu G, Jia H Y, Qu Z, Yang Y X 2017 Quantum Inf. Process. 16 244Google Scholar

    [8]

    Chen X B, Tang X, Xu G, Dou Z, Chen Y L, Yang Y X 2018 Quantum Inf. Process. 17 225Google Scholar

    [9]

    Curty M, Lütkenhaus N 2008 Phys. Rev. A 77 046301Google Scholar

    [10]

    Zeng G 2008 Phys. Rev. A 78 016301Google Scholar

    [11]

    Li Q, Chan W H, Long D Y 2009 Phys. Rev. A 79 054307Google Scholar

    [12]

    Zou X, Qiu D 2010 Phys. Rev. A 82 042325Google Scholar

    [13]

    Gao F, Qin S J, Guo F Z, Wen Q Y 2011 Phys. Rev. A 84 022344Google Scholar

    [14]

    Choi J W, Chang K Y, Hong D 2011 Phys. Rev. A 84 062330Google Scholar

    [15]

    张骏, 吴吉义 2013 北京邮电大学学报 36 113

    Zhang J, Wu J Y 2013 J. Beijing Univ. Posts Telecommun. 36 113

    [16]

    Li F G, Shi J H 2015 Quantum Inf. Process. 14 2171Google Scholar

    [17]

    Yang Y G, Lei H, Liu Z C, Zhou Y H, Shi W M 2016 Quantum Inf. Process. 15 2487Google Scholar

    [18]

    Zhang L, Sun H W, Zhang K J, Jia H Y 2017 Quantum Inf. Process. 16 70Google Scholar

    [19]

    Zhang Y, Zeng J 2018 Int. J. Theor. Phys. 57 994Google Scholar

    [20]

    Guo Y, Feng Y Y, Huang D Z, Shi J J 2016 Int. J. Theor. Phys. 55 2290Google Scholar

    [21]

    Feng Y Y, Shi R H, Guo Y 2018 Chin. Phys. B 27 020302Google Scholar

    [22]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 1687Google Scholar

    [23]

    Venegas-Andraca S E 2012 Quantum Inf. Process. 11 1015Google Scholar

    [24]

    Kempe J 2003 Contemp. Phys. 44 307Google Scholar

    [25]

    Wang Y, Shang Y, Xue P 2017 Quantum Inf. Process. 16 221Google Scholar

    [26]

    Shang Y, Wang Y, Li M, Lu R Q 2019 EPL- Europhys. Lett. 124 60009Google Scholar

    [27]

    Chen X B, Wang Y L, Xu G, Yang Y X 2019 IEEE Access 7 13634Google Scholar

    [28]

    Zou X, Dong Y, Guo G 2006 New J. Phys. 8 81Google Scholar

    [29]

    Bian Z H, Li J, Zhan X, Twamley J, Xue P 2017 Phys. Rev. A 95 052338Google Scholar

    [30]

    Tang H, Lin X F, Feng Z, Chen J Y, Gao J, Sun K, Wang C Y, Lai P C, Xu X Y, Wang Y, Qiao L F, Yang A L, Jin X M 2018 Sci. Adv. 4 eaat3174Google Scholar

    [31]

    Aharonov D, Ambainis A, Kempe J, Vazirani U 2001 Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing New York, USA, 2001 p50

    [32]

    Xue P, Zhang R, Qin H, Zhan X, Bian Z H, Li J, Sanders Barry C 2015 Phys. Rev. Lett. 114 140502Google Scholar

  • 图 1  具有四个顶点的环及其相移规则

    Fig. 1.  Shift regulations on a cycle with four vertexes.

    图 2  两个硬币的环上的量子游走线路原理图

    Fig. 2.  Circuit diagram of quantum walks on cycles with two coins.

    图 3  签名方案原理图(QKD代表量子密钥分发)

    Fig. 3.  Schematic of the suggested arbitrated quantum signature scheme. QKD is short for quantum key distribution.

    图 4  n = 50, 100, 150三种情况下Alice成功抵赖签名的概率${P_{{\rm{disavowal}}}}(m)$

    Fig. 4.  Alice’s disavowal probability ${P_{{\rm{disavowal}}}}(m)$ as a function of the amount m of the disavowed qubit in the signature state $|{S_a}\rangle $ for the respective $n = 50$, $n = 100$ and $n = 150$.

    表 1  测量结果与对应的恢复操作

    Table 1.  Measurement outcomes and the corresponding recovery operations.

    A2和A1的测量结果幺正操作
    2, 1I
    2, –1Z
    0, 1X
    0, –1$ZX$
    下载: 导出CSV

    表 2  协议比较

    Table 2.  Protocols comparison.

    协议量子资源信息副本传输方式加解密算法Alice的抵赖攻击是否成功Bob的存在性伪造攻击是否成功
    文献[2]GHZ态基于GHZ态的隐形传输QOTP
    文献[11]Bell态基于Bell态的隐形传输QOTP
    文献[12]单比特态量子加密QOTP
    文献[14]GHZ态基于GHZ态的隐形传输改进的QOTP
    文献[16]Bell态基于Bell态的隐形传输链式受控非
    文献[18]单比特态量子加密KCCC
    本协议单比特态量子游走的隐形传输KCCC
    下载: 导出CSV
    Baidu
  • [1]

    Meijer H, Akl S 1981 ACM SIGCOMM Comp. Com. 11 37Google Scholar

    [2]

    Zeng G, Keitel C H 2002 Phys. Rev. A 65 042312Google Scholar

    [3]

    Nielsen M A, Chuang I, Grover L K 2002 Am. J. Phys. 70 558Google Scholar

    [4]

    Guo Y, Xie C L, Liao Q, Zhao W, Zeng G H, Huang D 2017 Phys. Rev. A 96 022320Google Scholar

    [5]

    Guo Y, Liao Q, Wang Y, Wang Y J, Huang D, Huang P, Zeng G H 2017 Phys. Rev. A 95 032304Google Scholar

    [6]

    Xu G, Chen X B, Dou Z, Yang Y X, Li Z 2015 Quantum Inf. Process. 14 2959Google Scholar

    [7]

    Chen X B, Sun Y R, Xu G, Jia H Y, Qu Z, Yang Y X 2017 Quantum Inf. Process. 16 244Google Scholar

    [8]

    Chen X B, Tang X, Xu G, Dou Z, Chen Y L, Yang Y X 2018 Quantum Inf. Process. 17 225Google Scholar

    [9]

    Curty M, Lütkenhaus N 2008 Phys. Rev. A 77 046301Google Scholar

    [10]

    Zeng G 2008 Phys. Rev. A 78 016301Google Scholar

    [11]

    Li Q, Chan W H, Long D Y 2009 Phys. Rev. A 79 054307Google Scholar

    [12]

    Zou X, Qiu D 2010 Phys. Rev. A 82 042325Google Scholar

    [13]

    Gao F, Qin S J, Guo F Z, Wen Q Y 2011 Phys. Rev. A 84 022344Google Scholar

    [14]

    Choi J W, Chang K Y, Hong D 2011 Phys. Rev. A 84 062330Google Scholar

    [15]

    张骏, 吴吉义 2013 北京邮电大学学报 36 113

    Zhang J, Wu J Y 2013 J. Beijing Univ. Posts Telecommun. 36 113

    [16]

    Li F G, Shi J H 2015 Quantum Inf. Process. 14 2171Google Scholar

    [17]

    Yang Y G, Lei H, Liu Z C, Zhou Y H, Shi W M 2016 Quantum Inf. Process. 15 2487Google Scholar

    [18]

    Zhang L, Sun H W, Zhang K J, Jia H Y 2017 Quantum Inf. Process. 16 70Google Scholar

    [19]

    Zhang Y, Zeng J 2018 Int. J. Theor. Phys. 57 994Google Scholar

    [20]

    Guo Y, Feng Y Y, Huang D Z, Shi J J 2016 Int. J. Theor. Phys. 55 2290Google Scholar

    [21]

    Feng Y Y, Shi R H, Guo Y 2018 Chin. Phys. B 27 020302Google Scholar

    [22]

    Aharonov Y, Davidovich L, Zagury N 1993 Phys. Rev. A 48 1687Google Scholar

    [23]

    Venegas-Andraca S E 2012 Quantum Inf. Process. 11 1015Google Scholar

    [24]

    Kempe J 2003 Contemp. Phys. 44 307Google Scholar

    [25]

    Wang Y, Shang Y, Xue P 2017 Quantum Inf. Process. 16 221Google Scholar

    [26]

    Shang Y, Wang Y, Li M, Lu R Q 2019 EPL- Europhys. Lett. 124 60009Google Scholar

    [27]

    Chen X B, Wang Y L, Xu G, Yang Y X 2019 IEEE Access 7 13634Google Scholar

    [28]

    Zou X, Dong Y, Guo G 2006 New J. Phys. 8 81Google Scholar

    [29]

    Bian Z H, Li J, Zhan X, Twamley J, Xue P 2017 Phys. Rev. A 95 052338Google Scholar

    [30]

    Tang H, Lin X F, Feng Z, Chen J Y, Gao J, Sun K, Wang C Y, Lai P C, Xu X Y, Wang Y, Qiao L F, Yang A L, Jin X M 2018 Sci. Adv. 4 eaat3174Google Scholar

    [31]

    Aharonov D, Ambainis A, Kempe J, Vazirani U 2001 Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing New York, USA, 2001 p50

    [32]

    Xue P, Zhang R, Qin H, Zhan X, Bian Z H, Li J, Sanders Barry C 2015 Phys. Rev. Lett. 114 140502Google Scholar

计量
  • 文章访问数:  8467
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-02-27
  • 修回日期:  2019-04-15
  • 上网日期:  2019-06-01
  • 刊出日期:  2019-06-20

/

返回文章
返回
Baidu
map