搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全腔输出相对论磁控管输出模式转换结构的理论设计和数值模拟

杨温渊 董烨 董志伟

引用本文:
Citation:

全腔输出相对论磁控管输出模式转换结构的理论设计和数值模拟

杨温渊, 董烨, 董志伟

Design and simulation of output mode conversion structure of relativistic magnetron with all cavity output

Yang Wen-Yuan, Dong Ye, Dong Zhi-Wei
PDF
导出引用
  • 采用全腔输出结构后,相对论磁控管径向尺寸显著减小,轴向长度也有较大幅度的缩短.但是,由于输出结构为三个相对独立的扇形波导,实际应用时,一般需要对微波输出模式进行转换.针对全腔输出相对论磁控管,本文研究了两种输出模式转换结构并利用三维全电磁粒子模拟程序对其进行了研究.首先研究了将三个扇形波导角向增宽从而渐变或者突变为一个同轴波导的情况,研究结果表明,两种情况下输出微波功率均大于采用传统三个独立扇形波导输出时的90%,输出模式主要是TEM模.其次研究了输出区由三个扇形输出波导分别变换为三个截面大小与之接近的矩形输出波导的可行性,研究结果表明,注入扇形波导中的TE11模式几乎全部转换为矩形波导中的TE10模式.实际应用时,可根据需要选择上述输出模式转换结构.
    A relativistic magnetron using all cavity extraction and semi-transparent cathode has the virtues of compactness, high output power and high efficiency. The three-dimensional particle-in-cell simulations show that 1.15 GW output microwave with an efficiency about 50% can be obtained at S-band with pure TE11 mode of the fan waveguide. However, due to the fact that the output structure is composed of three detached fan waveguides, mode conversion structure in the output region is required for the convenience of practical applications. Therefore, two mode conversion structures are studied for the output mode conversion. The first structure is to widen gradually or abruptly the fan waveguide in the azimuthal direction from a given position (starting point) along the microwave transport direction. And then the three fan waveguides are connected into one coaxial waveguide. The effects of the position of the starting point on the beam-wave interaction and microwave extraction are numerically studied. For the convenience of description, we define L as the axial distance between the center of the output coupling hole and starting point. Simulation results show that for the abrupt and gradual variation case, when the length of L changes in a relatively wide region, the output power is larger than 1.0 GW in TEM mode at S-band. It is about 90% of the conventional fan waveguide with 1.15 GW. For the gradual variation case, the optimal value of L equals 10.0 cm, and the corresponding output power is beyond 1.0 GW. For the abrupt variation case, the optimal value of L equals 13.75 cm, the corresponding output power is about 1.15 GW. But in the abrupt variation case, the output power is a little more sensitive to the value of L. The second structure is to convert the fan waveguide into a rectangular waveguide. Acompound waveguide composed of a section of fan waveguide and a section of rectangular waveguide is designed for studying its feasibility. In the compound waveguide, the wide edges of the cross section of the rectangular waveguide are tangent to the inner and outer arc of the fan cross section respectively. And the narrow edges cross the end points of the outer arc. Simulation results show that in the compound waveguide the microwave with TE11 mode of the fan waveguide input at the inlet can be changed into the TE10 mode of the rectangular waveguide at the outlet with almost no power loss. In all, the output microwave power larger than 1.0 GW could be obtained after using the two proposed mode conversion structures. In practical applications, one could choose the relevant mode conversion structure according to the requirement.
      通信作者: 杨温渊, yang_wenyuan@iapcm.ac.cn
    • 基金项目: 国家自然科学基金(批准号:11305015,11475155,11875094)和中国工程物理研究院科学技术发展基金(批准号:2015B0402091)资助的课题.
      Corresponding author: Yang Wen-Yuan, yang_wenyuan@iapcm.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11305015, 11475155, 11875094) and the Science Foundation of China Academy of Engineering Physics (Grant No. 2015B0402091).
    [1]

    Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York: Institute of Electrical and Electronics Engineer, Inc.) pp54-57

    [2]

    Kim H J, Choi J J 2007 IEEE Trans. Dielectr. Elect. Insul. 14 1045

    [3]

    Lau Y Y, Luginsland J W, Cartwright K L, Simon D H, Tang W, Hoff B W, Gilgenbach R M 2010 Phys. Plasmas 17 033102

    [4]

    Liu M Q, Fuks M I, Schamiloglu E, Liu C L 2012 IEEE Trans. Plasma Sci. 40 1569

    [5]

    Leopold J G, Shlapakovski A S, Sayapin A, Krasik Y E 2015 IEEE Trans. Plasma Sci. 43 3168

    [6]

    Yang W, Dong Z, Yang Y, Dong Y 2014 IEEE Trans. Plasma Sci. 42 3458

    [7]

    Shi D F, Wang H G, Li W, Qian B L 2013 Acta Phys. Sin. 62 151101 (in Chinese) [史迪夫, 王弘刚, 李伟, 钱宝良 2013 62 151101]

    [8]

    Vintizenko I I, Mashchenko A I 2018 Instrum. Exp. Tech. 61 65

    [9]

    Fuks M I, Kovalev N F, Andreev A D, Schamiloglu E 2006 IEEE Trans. Plasma Sci. 34 620

    [10]

    Daimon M, Jiang W 2007 Appl. Phys. Lett. 91 191503

    [11]

    Fuks M I, Schamiloglu E 2010 IEEE Trans. Plasma Sci. 38 1302

    [12]

    Li W, Liu Y Q, Zhang J, Yang H W, Qian B L 2012 Phys. Plasmas 19 113108

    [13]

    Leach C, Prasad S, Fuks M I, Buchenauer J, McConaha J W, Schamiloglu E 2017 IEEE Trans. Plasma Sci. 45 282

    [14]

    Jiang Y Q, Li T M, Hao J L 2016 High Power Laser and Particle Beams 28 033003 (in Chinese) [姜亚群, 李天明, 郝晶龙 2016 强激光与粒子束 28 033003]

    [15]

    Greenwood A D 2006 US Patent 7 106 004 [2006-9-12]

    [16]

    Yang W Y, Dong Y, Dong Z W 2016 Acta Phys. Sin. 65 248401 (in Chinese) [杨温渊, 董烨, 董志伟 2016 65 248401]

    [17]

    Wang D, Qin F, Yang Y L, Zhang Y, Xu S 2016 High Power Laser and Particle Beams 28 033013 (in Chinese) [王冬, 秦奋, 杨郁林, 张勇, 徐莎 2016 强激光与粒子束 28 033013]

    [18]

    Shi D F, Qian B L, Wang H G, Li W, Du G X 2017 Sci. Rep. 7 1491

    [19]

    Shi D F, Qian B L, Wang H G, Li W, Du G X 2017 J. Phys. D: Appl. Phys. 49 465104

    [20]

    Zhang K Q, Li D J 2001 Electromagnetic Theory in Microwaves and Optoelectronics (1st Ed.) (Beijing: Publishing House of Electronics Industry) pp279-297 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第1版) (北京: 电子工业出版社)第279297页]

  • [1]

    Barker R J, Schamiloglu E 2001 High-Power Microwave Sources and Technologies (New York: Institute of Electrical and Electronics Engineer, Inc.) pp54-57

    [2]

    Kim H J, Choi J J 2007 IEEE Trans. Dielectr. Elect. Insul. 14 1045

    [3]

    Lau Y Y, Luginsland J W, Cartwright K L, Simon D H, Tang W, Hoff B W, Gilgenbach R M 2010 Phys. Plasmas 17 033102

    [4]

    Liu M Q, Fuks M I, Schamiloglu E, Liu C L 2012 IEEE Trans. Plasma Sci. 40 1569

    [5]

    Leopold J G, Shlapakovski A S, Sayapin A, Krasik Y E 2015 IEEE Trans. Plasma Sci. 43 3168

    [6]

    Yang W, Dong Z, Yang Y, Dong Y 2014 IEEE Trans. Plasma Sci. 42 3458

    [7]

    Shi D F, Wang H G, Li W, Qian B L 2013 Acta Phys. Sin. 62 151101 (in Chinese) [史迪夫, 王弘刚, 李伟, 钱宝良 2013 62 151101]

    [8]

    Vintizenko I I, Mashchenko A I 2018 Instrum. Exp. Tech. 61 65

    [9]

    Fuks M I, Kovalev N F, Andreev A D, Schamiloglu E 2006 IEEE Trans. Plasma Sci. 34 620

    [10]

    Daimon M, Jiang W 2007 Appl. Phys. Lett. 91 191503

    [11]

    Fuks M I, Schamiloglu E 2010 IEEE Trans. Plasma Sci. 38 1302

    [12]

    Li W, Liu Y Q, Zhang J, Yang H W, Qian B L 2012 Phys. Plasmas 19 113108

    [13]

    Leach C, Prasad S, Fuks M I, Buchenauer J, McConaha J W, Schamiloglu E 2017 IEEE Trans. Plasma Sci. 45 282

    [14]

    Jiang Y Q, Li T M, Hao J L 2016 High Power Laser and Particle Beams 28 033003 (in Chinese) [姜亚群, 李天明, 郝晶龙 2016 强激光与粒子束 28 033003]

    [15]

    Greenwood A D 2006 US Patent 7 106 004 [2006-9-12]

    [16]

    Yang W Y, Dong Y, Dong Z W 2016 Acta Phys. Sin. 65 248401 (in Chinese) [杨温渊, 董烨, 董志伟 2016 65 248401]

    [17]

    Wang D, Qin F, Yang Y L, Zhang Y, Xu S 2016 High Power Laser and Particle Beams 28 033013 (in Chinese) [王冬, 秦奋, 杨郁林, 张勇, 徐莎 2016 强激光与粒子束 28 033013]

    [18]

    Shi D F, Qian B L, Wang H G, Li W, Du G X 2017 Sci. Rep. 7 1491

    [19]

    Shi D F, Qian B L, Wang H G, Li W, Du G X 2017 J. Phys. D: Appl. Phys. 49 465104

    [20]

    Zhang K Q, Li D J 2001 Electromagnetic Theory in Microwaves and Optoelectronics (1st Ed.) (Beijing: Publishing House of Electronics Industry) pp279-297 (in Chinese) [张克潜, 李德杰 2001 微波与光电子学中的电磁理论(第1版) (北京: 电子工业出版社)第279297页]

  • [1] 谷馨, 张惠芳, 李明雨, 陈俊雅, 何英. 三椭圆谐振腔耦合波导中可调谐双重等离子体诱导透明效应的理论分析.  , 2022, 71(24): 247301. doi: 10.7498/aps.71.20221365
    [2] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应.  , 2022, 71(2): 024201. doi: 10.7498/aps.71.20211397
    [3] 朱子豪, 高有康, 曾严, 程政, 马洪华, 易煦农. 基于四盘形谐振腔耦合波导的三波段等离子体诱导透明效应.  , 2022, 71(24): 244201. doi: 10.7498/aps.71.20221397
    [4] 王波云, 朱子豪, 高有康, 曾庆栋, 刘洋, 杜君, 王涛, 余华清. 基于石墨烯纳米条波导边耦合矩形腔的等离子体诱导透明效应研究.  , 2021, (): . doi: 10.7498/aps.70.20211397
    [5] 漆世锴, 王小霞, 王兴起, 胡明玮, 刘理, 曾伟. 大功率磁控管用新型Y2Hf2O7陶瓷阴极研究.  , 2020, 69(3): 037901. doi: 10.7498/aps.69.20191496
    [6] 陈颖, 谢进朝, 周鑫德, 张灿, 杨惠, 李少华. 基于表面等离子体诱导透明的半封闭T形波导侧耦合圆盘腔的波导滤波器.  , 2019, 68(23): 237301. doi: 10.7498/aps.68.20191068
    [7] 王淦平, 金晓, 黄华, 刘振帮. 强流相对论多注电子束在空心圆柱波导中的漂移.  , 2017, 66(4): 044102. doi: 10.7498/aps.66.044102
    [8] 漆世锴, 王小霞, 罗积润, 赵青兰, 李云. 磁控管用新型Y2O3-Gd2O3-HfO2浸渍W基直热式阴极研究.  , 2016, 65(5): 057901. doi: 10.7498/aps.65.057901
    [9] 杨温渊, 董烨, 董志伟. 新型全腔输出半透明阴极相对论磁控管的理论和数值研究.  , 2016, 65(24): 248401. doi: 10.7498/aps.65.248401
    [10] 成会, 谢鸿全, 刘迎辉, 李正红, 吴洋. S波段四腔强流相对论速调管的设计和实验研究.  , 2014, 63(1): 018402. doi: 10.7498/aps.63.018402
    [11] 陈永东, 吴洋, 谢鸿全, 李正红, 周自刚. 相对论速调管中间腔与调制电子束间的非线性互作用.  , 2013, 62(10): 104104. doi: 10.7498/aps.62.104104
    [12] 王辉辉, 蒙林, 刘大刚, 刘腊群, 杨超. 基于相对论返波管的全三维PIC/PSO数值优化研究.  , 2013, 62(13): 138401. doi: 10.7498/aps.62.138401
    [13] 史迪夫, 王弘刚, 李伟, 钱宝良. 扇形腔旭日型磁控管结构的理论分析与数字模拟.  , 2013, 62(15): 151101. doi: 10.7498/aps.62.151101
    [14] 吴涛, 黄华, 王淦平, 金晓, 刘振帮, 陈昭福, 任屹灏, 陈永东, 王清源. 扇形多注强流相对论电子束的产生与传输研究.  , 2012, 61(18): 184218. doi: 10.7498/aps.61.184218
    [15] 李伟, 刘永贵, 杨建华. 同轴辐射相对论磁控管的功率合成研究.  , 2012, 61(3): 038401. doi: 10.7498/aps.61.038401
    [16] 李伟, 刘永贵. 2工作模式下可调谐同轴辐射相对论磁控管的模拟研究.  , 2011, 60(12): 128403. doi: 10.7498/aps.60.128403
    [17] 黄华, 罗雄, 雷禄容, 罗光耀, 张北镇, 金晓, 谭杰. 长脉冲相对论扩展互作用腔振荡器的初步研究.  , 2010, 59(3): 1907-1912. doi: 10.7498/aps.59.1907
    [18] 黄 华, 孟凡宝, 范植开, 李正红, 方 向. 相对论速调管三轴提取腔的分析与设计.  , 2006, 55(10): 5344-5348. doi: 10.7498/aps.55.5344
    [19] 胡 旻, 祝大军, 刘盛纲. 强流相对论电子束双腔纵向自调制研究.  , 2005, 54(6): 2633-2637. doi: 10.7498/aps.54.2633
    [20] 艾克聪, 西门纪业, 周立伟. 电磁复合聚焦—偏转球面阴极透镜的相对论象差理论.  , 1986, 35(9): 1210-1222. doi: 10.7498/aps.35.1210
计量
  • 文章访问数:  5314
  • PDF下载量:  60
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-27
  • 修回日期:  2018-06-04
  • 刊出日期:  2019-09-20

/

返回文章
返回
Baidu
map