搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液体-液体相变与反常特性

李任重 武振伟 徐莉梅

引用本文:
Citation:

液体-液体相变与反常特性

李任重, 武振伟, 徐莉梅

Liquid-liquid phase transition and anomalous properties

Li Ren-Zhong, Wu Zhen-Wei, Xu Li-Mei
PDF
导出引用
  • 绝大多数物质的液态密度随温度降低而增大,即常见的热胀冷缩现象.但存在一类物质,如水及第四主族的硅、锗等,其液态密度在一定温度范围内随温度的升高而增大,即密度反常现象.此外,该类物质还存在动力学反常(密度越大粒子运动越快)、热力学反常(热力学量的涨落随温度降低而升高)等其他反常特性.这类材料的化学性质千差万别,但却具有相似的物理反常特性.进一步的理论研究发现部分材料具有两种液态,即高密度液态和低密度液态,两者之间存在一级相变.因此,反常特性与液体-液体相变是否有直接关联是一个值得深入研究的课题.本文主要介绍了具有液体-液体相变的一类材料及其反常特性,包括高温高压下氢的液体-液体相变及其超临界现象,镓的反常特性及其与液体-液体相变的关联等.
    In most of liquids, densities increase as temperature decreases. However, the densities of water and water-like liquids, such as silicon and germanium, are anomalous, which increase as temperature increases. Such substances also show other anomalous behaviors, such as diffusivity anomalies (diffusivities increase as density increases), and thermodynamic anomalies (the fluctuations increase as temperature decreases). The chemical properties of these materials are very different from each other, but they all share similar physical properties. Further studies indicate that most of them have two distinct liquid states, i.e., a low-density liquid and a high-density liquid, and a first order liquid-liquid phase transition (LLPT) between these two liquids. We mainly discuss the anomalous properties of materials each of which has a predicted LLPT and their relations with anomalous behaviors (thermodynamic, dynamic and structural) as those of water and water-like liquids, such as hydrogen and gallium. In particular, we discuss the supercritical phenomenon of the liquid-liquid phase transition of hydrogen, as well as the liquid-liquid phase transition of gallium and its relation with the thermodynamic, dynamic, and structural anomalies. It is found that the liquid hydrogen and gallium both have the LLPT and share similar anomalous behaviors as water and water-like liquids, such as density anomaly, dynamics anomaly, thermodynamic anomaly Since the chemical properties of these materials are very different from those of others having the LLPT, the anomalous behaviors may be common features for substances predicted to have the LLPT.
      通信作者: 徐莉梅, limei.xu@pku.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号:2015CB856801)、国家自然科学基金(批准号:11525520)和中国博士后科学基金(批准号:2017M610687)资助的课题.
      Corresponding author: Xu Li-Mei, limei.xu@pku.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2015CB856801), the National Natural Science Foundation of China (Grant No. 11525520), and the China Postdoctoral Science Foundation Funded Project (Grant No. 2017M610687).
    [1]

    Speedy R J, Angell C A 1976 J. Chem. Phys. 65 851

    [2]

    Angel C A, Shuppert J, Tucker J C 1973 J. Phys. Chem. 77 3092

    [3]

    Debenedetti P G 2003 J. Phys. Condens. Matter 15 R1669

    [4]

    Angell C A, Sichina W J, Oguni M 1981 Tech. Report

    [5]

    Angell C A 2004 Annu. Rev. Phys. Chem. 55 559

    [6]

    Kumar P, Stanley H E 2011 J. Phys. Chem. B 115 14269

    [7]

    Sato H, Watanabe K, Levelt Sengers J M H, Gallagher J S, Hill P G, Straub J, Wagner W 1991 J. Phys. Chem. Ref. data 20 1023

    [8]

    Conde O, Teixeira J, Papon P 1982 J. Chem. Phys. 76 3747

    [9]

    Kanno H, Angell C A 1979 J. Chem. Phys. 70 4008

    [10]

    Errington J R, Debenedetti P G 2001 Nature 409 318

    [11]

    Ball P 2008 Nature 452 291

    [12]

    Sastry S, Debenedetti P G, Sciortino F, Stanley H E 1996 Phys. Rev. E 53 6144

    [13]

    Angell C A 2008 Science 319 582

    [14]

    Poole P H, Sciortino F, Essmann U, Stanley H E 1992 Nature 360 324

    [15]

    Sastry S, Angell C A 2003 Nat. Mater. 2 739

    [16]

    Saika-Voivod I, Sciortino F, Poole P H 2000 Phys. Rev. E 63 11202

    [17]

    Morales M A, McMahon J M, Pierleoni C, Ceperley D M 2013 Phys. Rev. Lett. 110 65702

    [18]

    Li R, Chen J, Li X, Wang E, Xu L 2015 New J. Phys. 17

    [19]

    Liu Y, Panagiotopoulos A Z, Debenedetti P G 2009 J. Chem. Phys. 131 9473

    [20]

    Poole P H, Saikavoivod I, Sciortino F 2005 J. Phys. Condens. Matter 17 L431

    [21]

    Harrington S, Poole P H, Sciortino F, Stanley H E 1997 J. Chem. Phys. 107 7443

    [22]

    Yamada M, Mossa S, Stanley H E, Sciortino F 2002 Phys. Rev. Lett. 88 195701

    [23]

    Brovchenko I, Geiger A, Oleinikova A 2005 J. Chem. Phys. 123 44515

    [24]

    Sciortino F, La N E, Tartaglia P 2003 Phys. Rev. Lett. 91 155701

    [25]

    Mishima O, Stanley H E 1998 Nature 392 164

    [26]

    Glosli J N, Ree F H 1999 Phys. Rev. Lett. 82 4659

    [27]

    Mukherjee G D, Boehler R 2007 Phys. Rev. Lett. 99 225701

    [28]

    Boates B, Bonev S A 2009 Phys. Rev. Lett. 102 15701

    [29]

    Morales M A, Pierleoni C, Schwegler E, Ceperley D M 2010 Proc. Natl. Acad. Sci. USA 107 12799

    [30]

    Vasisht V V, Mathew J, Sengupta S, Sastry S 2014 J. Chem. Phys. 141 124501

    [31]

    Vasisht V V, Saw S, Sastry S 2011 Nat. Phys. 7 549

    [32]

    Katayama Y, Mizutani T, Utsumi W, Shimomura O, Yamakata M, Funakoshi K 2000 Nature 403 170

    [33]

    Carvajal Jara D A, Fontana M M, Antonelli A, De K M 2009 J. Chem. Phys. 130 221101

    [34]

    Bhat M, Molinero V, Soignard E, Solomon V, Sastry S, Yarger J, Angell C 2007 Nature 38 787

    [35]

    Brazhkin V V, Popova S V, Voloshin R N 1999 Phys. B: Condens. Matter 265 64

    [36]

    Cadien A, Hu Q Y, Meng Y, Cheng Y Q, Chen M W, Shu J F, Mao H K, Sheng H W 2013 Phys. Rev. Lett. 110 125503

    [37]

    Greaves G N, Wilding M C, Fearn S, Langstaff D, Kargl F, Cox S, Van Q V, Majérus O, Benmore C J, Weber R, Matin C M, Hennet L 2008 Science 322 566

    [38]

    Sheng H W, Liu H Z, Cheng Y Q, Wen J, Lee P L, Luo W K, Shastri S D, Ma E 2007 Nat. Mater. 6 192

    [39]

    Zeng Q S, Ding Y, Mao W L, Yang W, Sinogeikin S V, Shu J, Mao H K, Jiang J Z 2010 Phys. Rev. Lett. 104 105702

    [40]

    Li R, Sun G, Xu L 2016 J. Chem. Phys. 145 54506

    [41]

    Shell M S, Debenedetti P G, Panagiotopoulos A Z 2002 Phys. Rev. E 66 11202

    [42]

    Weir S T, Mitchell A C, Nellis W J 1996 Phys. Rev. Lett. 76 1860

    [43]

    Fortov V E, Ilkaev R I, Arinin V A, Burtzev V V, Golubev V A, Iosilevskiy I L, Khrustalev V V, Mikhailov A L, Mochalov M A, Ternovoi V Y 2007 Phys. Rev. Lett. 99 185001

    [44]

    Delaney K T, Pierleoni C, Ceperley D M 2006 Phys. Rev. Lett. 97 235702

    [45]

    Holst B, Redmer R, Desjarlais M P 2008 Phys. Rev. B 77

    [46]

    Scandolo S 2003 Proc. Natl. Acad. Sci. USA 100 3051

    [47]

    Bonev S A, Militzer B, Galli G 2004 Phys. Rev. B 69 1985

    [48]

    Pierleoni C, Morales M A, Rillo G, Holzmann M, Ceperley D M 2016 Proc. Natl. Acad. Sci. USA 113 4953

    [49]

    Xu L, Kumar P, Buldyrev S V, Chen S H, Poole P H, Sciortino F, Stanley H E 2005 Proc. Natl. Acad. Sci. USA 102 16558

    [50]

    Xu L, Buldyrev S V, Angell C A, Stanley H E 2006 Phys. Rev. E 74 31108

    [51]

    Liu L, Chen S H, Faraone A, Yen C W, Mou C Y 2005 Phys. Rev. Lett. 97 716

    [52]

    Rose M C, Cohen R E 2012 Phys. Rev. Lett. 109 187604

    [53]

    Comez L, Cicco A Di, Itie J P, Polian A 2001 Phys. Rev. B 65 853

    [54]

    Wei S, Oyanagi H, Liu W, Hu T, Yin S, Bian G 2000 J. Non. Cryst. Solids 275 160

    [55]

    Tien C, Charnaya E V, Wang W, Kumzerov Y A, Michel D 2006 Phys. Rev. B 74 24116

    [56]

    Cajahuaringa S, de Koning M, Antonelli A 2012 J. Chem. Phys. 136 64513

    [57]

    Yan Z, Buldyrev S V, Kumar P, Giovambattista N, Debenedetti P G, Stanley H E 2007 Phys. Rev. E 76 51201

    [58]

    Corsetti F, Artacho E, Soler J M, Alexandre S S, Fernandezserra M V 2013 J. Chem. Phys. 139 194502

  • [1]

    Speedy R J, Angell C A 1976 J. Chem. Phys. 65 851

    [2]

    Angel C A, Shuppert J, Tucker J C 1973 J. Phys. Chem. 77 3092

    [3]

    Debenedetti P G 2003 J. Phys. Condens. Matter 15 R1669

    [4]

    Angell C A, Sichina W J, Oguni M 1981 Tech. Report

    [5]

    Angell C A 2004 Annu. Rev. Phys. Chem. 55 559

    [6]

    Kumar P, Stanley H E 2011 J. Phys. Chem. B 115 14269

    [7]

    Sato H, Watanabe K, Levelt Sengers J M H, Gallagher J S, Hill P G, Straub J, Wagner W 1991 J. Phys. Chem. Ref. data 20 1023

    [8]

    Conde O, Teixeira J, Papon P 1982 J. Chem. Phys. 76 3747

    [9]

    Kanno H, Angell C A 1979 J. Chem. Phys. 70 4008

    [10]

    Errington J R, Debenedetti P G 2001 Nature 409 318

    [11]

    Ball P 2008 Nature 452 291

    [12]

    Sastry S, Debenedetti P G, Sciortino F, Stanley H E 1996 Phys. Rev. E 53 6144

    [13]

    Angell C A 2008 Science 319 582

    [14]

    Poole P H, Sciortino F, Essmann U, Stanley H E 1992 Nature 360 324

    [15]

    Sastry S, Angell C A 2003 Nat. Mater. 2 739

    [16]

    Saika-Voivod I, Sciortino F, Poole P H 2000 Phys. Rev. E 63 11202

    [17]

    Morales M A, McMahon J M, Pierleoni C, Ceperley D M 2013 Phys. Rev. Lett. 110 65702

    [18]

    Li R, Chen J, Li X, Wang E, Xu L 2015 New J. Phys. 17

    [19]

    Liu Y, Panagiotopoulos A Z, Debenedetti P G 2009 J. Chem. Phys. 131 9473

    [20]

    Poole P H, Saikavoivod I, Sciortino F 2005 J. Phys. Condens. Matter 17 L431

    [21]

    Harrington S, Poole P H, Sciortino F, Stanley H E 1997 J. Chem. Phys. 107 7443

    [22]

    Yamada M, Mossa S, Stanley H E, Sciortino F 2002 Phys. Rev. Lett. 88 195701

    [23]

    Brovchenko I, Geiger A, Oleinikova A 2005 J. Chem. Phys. 123 44515

    [24]

    Sciortino F, La N E, Tartaglia P 2003 Phys. Rev. Lett. 91 155701

    [25]

    Mishima O, Stanley H E 1998 Nature 392 164

    [26]

    Glosli J N, Ree F H 1999 Phys. Rev. Lett. 82 4659

    [27]

    Mukherjee G D, Boehler R 2007 Phys. Rev. Lett. 99 225701

    [28]

    Boates B, Bonev S A 2009 Phys. Rev. Lett. 102 15701

    [29]

    Morales M A, Pierleoni C, Schwegler E, Ceperley D M 2010 Proc. Natl. Acad. Sci. USA 107 12799

    [30]

    Vasisht V V, Mathew J, Sengupta S, Sastry S 2014 J. Chem. Phys. 141 124501

    [31]

    Vasisht V V, Saw S, Sastry S 2011 Nat. Phys. 7 549

    [32]

    Katayama Y, Mizutani T, Utsumi W, Shimomura O, Yamakata M, Funakoshi K 2000 Nature 403 170

    [33]

    Carvajal Jara D A, Fontana M M, Antonelli A, De K M 2009 J. Chem. Phys. 130 221101

    [34]

    Bhat M, Molinero V, Soignard E, Solomon V, Sastry S, Yarger J, Angell C 2007 Nature 38 787

    [35]

    Brazhkin V V, Popova S V, Voloshin R N 1999 Phys. B: Condens. Matter 265 64

    [36]

    Cadien A, Hu Q Y, Meng Y, Cheng Y Q, Chen M W, Shu J F, Mao H K, Sheng H W 2013 Phys. Rev. Lett. 110 125503

    [37]

    Greaves G N, Wilding M C, Fearn S, Langstaff D, Kargl F, Cox S, Van Q V, Majérus O, Benmore C J, Weber R, Matin C M, Hennet L 2008 Science 322 566

    [38]

    Sheng H W, Liu H Z, Cheng Y Q, Wen J, Lee P L, Luo W K, Shastri S D, Ma E 2007 Nat. Mater. 6 192

    [39]

    Zeng Q S, Ding Y, Mao W L, Yang W, Sinogeikin S V, Shu J, Mao H K, Jiang J Z 2010 Phys. Rev. Lett. 104 105702

    [40]

    Li R, Sun G, Xu L 2016 J. Chem. Phys. 145 54506

    [41]

    Shell M S, Debenedetti P G, Panagiotopoulos A Z 2002 Phys. Rev. E 66 11202

    [42]

    Weir S T, Mitchell A C, Nellis W J 1996 Phys. Rev. Lett. 76 1860

    [43]

    Fortov V E, Ilkaev R I, Arinin V A, Burtzev V V, Golubev V A, Iosilevskiy I L, Khrustalev V V, Mikhailov A L, Mochalov M A, Ternovoi V Y 2007 Phys. Rev. Lett. 99 185001

    [44]

    Delaney K T, Pierleoni C, Ceperley D M 2006 Phys. Rev. Lett. 97 235702

    [45]

    Holst B, Redmer R, Desjarlais M P 2008 Phys. Rev. B 77

    [46]

    Scandolo S 2003 Proc. Natl. Acad. Sci. USA 100 3051

    [47]

    Bonev S A, Militzer B, Galli G 2004 Phys. Rev. B 69 1985

    [48]

    Pierleoni C, Morales M A, Rillo G, Holzmann M, Ceperley D M 2016 Proc. Natl. Acad. Sci. USA 113 4953

    [49]

    Xu L, Kumar P, Buldyrev S V, Chen S H, Poole P H, Sciortino F, Stanley H E 2005 Proc. Natl. Acad. Sci. USA 102 16558

    [50]

    Xu L, Buldyrev S V, Angell C A, Stanley H E 2006 Phys. Rev. E 74 31108

    [51]

    Liu L, Chen S H, Faraone A, Yen C W, Mou C Y 2005 Phys. Rev. Lett. 97 716

    [52]

    Rose M C, Cohen R E 2012 Phys. Rev. Lett. 109 187604

    [53]

    Comez L, Cicco A Di, Itie J P, Polian A 2001 Phys. Rev. B 65 853

    [54]

    Wei S, Oyanagi H, Liu W, Hu T, Yin S, Bian G 2000 J. Non. Cryst. Solids 275 160

    [55]

    Tien C, Charnaya E V, Wang W, Kumzerov Y A, Michel D 2006 Phys. Rev. B 74 24116

    [56]

    Cajahuaringa S, de Koning M, Antonelli A 2012 J. Chem. Phys. 136 64513

    [57]

    Yan Z, Buldyrev S V, Kumar P, Giovambattista N, Debenedetti P G, Stanley H E 2007 Phys. Rev. E 76 51201

    [58]

    Corsetti F, Artacho E, Soler J M, Alexandre S S, Fernandezserra M V 2013 J. Chem. Phys. 139 194502

  • [1] 杜啸颖, 俞振华. 分形格点中伊辛模型的临界行为.  , 2023, 72(8): 080503. doi: 10.7498/aps.72.20222432
    [2] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界二氧化碳类液-类气区边界线数值分析.  , 2022, 71(4): 040201. doi: 10.7498/aps.71.20211464
    [3] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性.  , 2021, (): . doi: 10.7498/aps.70.20211266
    [4] 孙辉, 刘婧楠, 章立新, 杨其国, 高明. 超临界CO2类液-类气区边界线数值分析.  , 2021, (): . doi: 10.7498/aps.70.20211464
    [5] 陈海霞, 林书玉. 超声在液体中的非线性传播及反常衰减.  , 2020, 69(13): 134301. doi: 10.7498/aps.69.20200425
    [6] 李雪辰, 耿金伶, 贾鹏英, 吴凯玥, 贾博宇, 康鹏程. 液体电极上辉光放电丝的运动特性研究.  , 2018, 67(7): 075201. doi: 10.7498/aps.67.20172205
    [7] 胡丽娜, 赵茜, 张春芝. 金属玻璃液体中的强脆转变现象.  , 2017, 66(17): 176403. doi: 10.7498/aps.66.176403
    [8] 任景莉, 于利萍, 张李盈. 非晶物质中的临界现象.  , 2017, 66(17): 176401. doi: 10.7498/aps.66.176401
    [9] 曹松华, 吴九汇, 王煜, 侯明明, 李竞. 声学脉冲序列及全透声机理研究.  , 2016, 65(6): 064302. doi: 10.7498/aps.65.064302
    [10] 赵瑞, 徐荣青, 梁忠诚, 陆建, 倪晓武. 含气量对黏性液体中空泡脉动特性的影响.  , 2009, 58(12): 8400-8405. doi: 10.7498/aps.58.8400
    [11] 卢义刚, 彭健新. 运用液体声学理论研究超临界二氧化碳的声特性.  , 2008, 57(2): 1030-1036. doi: 10.7498/aps.57.1030
    [12] 郝鹏飞, 姚朝晖, 何 枫. 粗糙微管道内液体流动特性的实验研究.  , 2007, 56(8): 4728-4732. doi: 10.7498/aps.56.4728
    [13] 夏明许, 孟庆格, 张曙光, 马朝利, 李建国. 金属玻璃形成液体的热力学特性.  , 2006, 55(12): 6543-6549. doi: 10.7498/aps.55.6543
    [14] 曹炳阳, 陈 民, 过增元. 纳米通道内液体流动的滑移现象.  , 2006, 55(10): 5305-5310. doi: 10.7498/aps.55.5305
    [15] 巩龙, 童培庆. 二维格气模型中动力学相变与自组织临界现象.  , 2003, 52(11): 2757-2761. doi: 10.7498/aps.52.2757
    [16] 王 漪, 韩汝琦, 刘晓彦, 崛口刚. 超薄膜磁性材料上XY模型的临界现象.  , 2003, 52(7): 1776-1782. doi: 10.7498/aps.52.1776
    [17] 叶高翔, 杨 波, 夏阿根, 金进生, 罗孟波, 许健民. 银原子在液体基底上的凝聚特性.  , 1998, 47(11): 1900-1905. doi: 10.7498/aps.47.1900
    [18] 都有为, 童兴武, 钟伟, 王挺祥, 干昌明, 章肖融. 超声波在磁性液体中的传播特性.  , 1992, 41(1): 144-148. doi: 10.7498/aps.41.144
    [19] 许培英, 盛冬宁, 陆怀先. 磁性液体的介电特性.  , 1988, 37(7): 1192-1196. doi: 10.7498/aps.37.1192
    [20] 王鹏业, 张洪钧, 戴建华. 光学双稳态和混沌运动中的临界现象.  , 1985, 34(10): 1233-1240. doi: 10.7498/aps.34.1233
计量
  • 文章访问数:  7420
  • PDF下载量:  519
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-26
  • 修回日期:  2017-08-16
  • 刊出日期:  2017-09-05

/

返回文章
返回
Baidu
map