搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矢量基尔霍夫公式经典证明的漏洞与新的严格证明

黄晓伟 盛新庆

引用本文:
Citation:

矢量基尔霍夫公式经典证明的漏洞与新的严格证明

黄晓伟, 盛新庆

Flaws in classical proofs of vector Kirchhoff integral theorem and its new strict proof

Huang Xiao-Wei, Sheng Xin-Qing
PDF
导出引用
  • 矢量基尔霍夫积分公式是电磁理论的一个重要公式,更是光学衍射理论的基础.然而,我们发现经典著作中这个公式的证明普遍存在漏洞.本文将逐一指出这些漏洞,在此基础上给出一个新的严格证明.最后用数值实验验证我们的结论.
    The vector Kirchhoff integral theorem (VKI) is an important formula in electromagnetic (EM) theory,especially it is a basis of the optical diffraction theory.Recently,it has been found that there exist some flaws in the proofs presented in the literature.There are mainly two types of methods to prove the VKI.The first type of method is to employ the vector analysis to prove the VKI directly.Some flaws of this type of proof presented in the literature have been found and pointed out in this paper.The second type of method is to employ the scalar Kirchhoff Integral (SKI) to directly obtain the VKI. The SKI was first derived by Kirchhoff (1882).In spite of its mathematical inconsistency and its physical deficiencies, the SKI works remarkably well in the optical domain and has been the basis of most of the work on diffraction.However, the proofs for SKI usually need the scalar radiation conditions.The scalar radiation condition was first proposed by Sommerfeld to ensure the uniqueness of the solution of certain exterior boundary value problems in mathematical physics. But whether the scalar radiation conditions were suitable for the EM was not sure.In fact,for electromagnetic field,we have another vector radiation conditions which have been verified to be adaptable for all the radiation and scattering fields.It is difficult to obtain the scalar radiation conditions directly by just separating three Cartesian directions from the vector one,because the different scalar components are coupled together after the rotation and cross product operation.Actually,few strict proofs could be found to support the fact that EM satisfies the scalar radiation condition. So as the supplementary,the scalar radiation conditions will be derived in detail with far-field approximation method in this paper.To avoid using the scalar radiation condition which may bring some non-rigorousness,we perform a new strict proof for the VKI by using the vector analysis identities. The rest of this paper is organized as follows.In Section 2,the different proofs presented in the classical books will be analyzed in detail.The flaws existing in these proofs will be pointed out.After that,in Section 3,based on the Stratton-Chu formula,a new strict proof will be given with using the vector identities.In Section 4,a sensitivity analysis is numerically performed to confirm our demonstration.Finally,the conclusions are drawn from the present study in Section 5.The scalar radiation conditions will be discussed in the appendix.
      通信作者: 盛新庆, xsheng@bit.edu.cn
    • 基金项目: 国家重点研发计划项目(批准号:2017YFB0202500)资助的课题.
      Corresponding author: Sheng Xin-Qing, xsheng@bit.edu.cn
    • Funds: Project supported by the National Key RD Program of China (Grant No. 2017YFB0202500).
    [1]

    Jackson J D 1998 Classical Electrodynamics (3rd Ed.) (New York:Wiley-Interscience) pp479-482

    [2]

    Born M, Wolf E 1986 Principles of Optics (6th Ed.) (New York:Pergamon Press Ltd) pp375-378

    [3]

    Buchwald J Z, Yeang C P 2016 Arch. Hist. Exact Sci. 70 463

    [4]

    Wang X F, Wang J Y 2011 Acta Phys. Sin. 60 025212 (in Chinese)[王晓方, 王晶宇2011 60 025212]

    [5]

    Gordon W B 1975 IEEE Trans. Antennas Propagat. 23 590

    [6]

    Umul Y Z 2013 Opt. Commun. 291 48

    [7]

    Wang A, Prata A 1995 Opt. Soc. Am. A 12 1161

    [8]

    Liu C X, Cheng C F, Ren X R, Liu M, Teng S Y, Xu Z Z 2004 Acta Phys. Sin. 53 427 (in Chinese)[刘春香, 程传福, 任晓荣, 刘曼, 滕树云, 徐至展2004 53 427]

    [9]

    Sheng X Q 2016 Electromagnetic Theory, Computation, Application (Beijing:Higher Education Press) pp169-171(in Chinese)[盛新庆2016电磁理论、计算、应用(北京:高等教育出版社)第169–171页]

    [10]

    Kong J A 1986 Electromagnetic Wave Theory (New York:Wiley-Interscience) pp381-383

    [11]

    Ge D B 2009 Electromagnetic Wave Theory (Beijing:Science Press) pp334-337(in Chinese)[葛德彪2009电磁波理论(北京:科学出版社)第334–337页]

    [12]

    Zhang S J 2009 Engineering Electromagnetics (Beijing:Science Press) pp638-640(in Chinese)[张善杰2009工程电磁场(北京:科学出版社)第638–640页]

    [13]

    Yang R G 2008 Advanced Electromagnetic Theory (Beijing:Higher Education Press) pp175-177(in Chinese)[杨儒贵2008高等电磁理论(北京:高等教育出版社)第175–177页]

    [14]

    Gong Z L 2010 Modern Electromagnetic Theory (2nd Ed.) (Beijing:Peking University Press) pp288-291(in Chinese)[龚中麟2010近代电磁理论第2版(北京:北京大学出版社)第288–291页]

    [15]

    Schot S H 1992 Hist. Math. 19 385

    [16]

    Sommerfeld A 1949 Partial Differential Equations in Physics (New York:Academic Press) pp188-193

    [17]

    Ji J R 2007 Advanced Optical Tutorial (Beijing:Science Press) pp166-168(in Chinese)[季家镕2007高等光学教程(北京:科学出版社)第166–168页]

    [18]

    Goodman J W 1996 Introduction to Fourier Optics (2nd Ed.) (New York:McGraw-Hill) pp42-44

    [19]

    Huang K Z 2009 Tensor Analysis (2nd Ed.) (Beijing:Tsinghua University Press) pp139-149(in Chinese)[黄克智2009张量分析第2版(北京:清华大学出版)第139–149页]

    [20]

    Sheng X Q 2008 A Brief Treatise on Computational Electromagnetics (2nd Ed.) (Hefei:Press of University of Science and Technology of China) pp42-43(in Chinese)[盛新庆2008计算电磁学要论第2版(合肥:中国科学技术大学出版社)第42–43页]

    [21]

    Tai C T 1997 Generalized Vector and Dyadic Analysis (2nd Ed.) (New York:Wiley-Interscience) pp124-127

  • [1]

    Jackson J D 1998 Classical Electrodynamics (3rd Ed.) (New York:Wiley-Interscience) pp479-482

    [2]

    Born M, Wolf E 1986 Principles of Optics (6th Ed.) (New York:Pergamon Press Ltd) pp375-378

    [3]

    Buchwald J Z, Yeang C P 2016 Arch. Hist. Exact Sci. 70 463

    [4]

    Wang X F, Wang J Y 2011 Acta Phys. Sin. 60 025212 (in Chinese)[王晓方, 王晶宇2011 60 025212]

    [5]

    Gordon W B 1975 IEEE Trans. Antennas Propagat. 23 590

    [6]

    Umul Y Z 2013 Opt. Commun. 291 48

    [7]

    Wang A, Prata A 1995 Opt. Soc. Am. A 12 1161

    [8]

    Liu C X, Cheng C F, Ren X R, Liu M, Teng S Y, Xu Z Z 2004 Acta Phys. Sin. 53 427 (in Chinese)[刘春香, 程传福, 任晓荣, 刘曼, 滕树云, 徐至展2004 53 427]

    [9]

    Sheng X Q 2016 Electromagnetic Theory, Computation, Application (Beijing:Higher Education Press) pp169-171(in Chinese)[盛新庆2016电磁理论、计算、应用(北京:高等教育出版社)第169–171页]

    [10]

    Kong J A 1986 Electromagnetic Wave Theory (New York:Wiley-Interscience) pp381-383

    [11]

    Ge D B 2009 Electromagnetic Wave Theory (Beijing:Science Press) pp334-337(in Chinese)[葛德彪2009电磁波理论(北京:科学出版社)第334–337页]

    [12]

    Zhang S J 2009 Engineering Electromagnetics (Beijing:Science Press) pp638-640(in Chinese)[张善杰2009工程电磁场(北京:科学出版社)第638–640页]

    [13]

    Yang R G 2008 Advanced Electromagnetic Theory (Beijing:Higher Education Press) pp175-177(in Chinese)[杨儒贵2008高等电磁理论(北京:高等教育出版社)第175–177页]

    [14]

    Gong Z L 2010 Modern Electromagnetic Theory (2nd Ed.) (Beijing:Peking University Press) pp288-291(in Chinese)[龚中麟2010近代电磁理论第2版(北京:北京大学出版社)第288–291页]

    [15]

    Schot S H 1992 Hist. Math. 19 385

    [16]

    Sommerfeld A 1949 Partial Differential Equations in Physics (New York:Academic Press) pp188-193

    [17]

    Ji J R 2007 Advanced Optical Tutorial (Beijing:Science Press) pp166-168(in Chinese)[季家镕2007高等光学教程(北京:科学出版社)第166–168页]

    [18]

    Goodman J W 1996 Introduction to Fourier Optics (2nd Ed.) (New York:McGraw-Hill) pp42-44

    [19]

    Huang K Z 2009 Tensor Analysis (2nd Ed.) (Beijing:Tsinghua University Press) pp139-149(in Chinese)[黄克智2009张量分析第2版(北京:清华大学出版)第139–149页]

    [20]

    Sheng X Q 2008 A Brief Treatise on Computational Electromagnetics (2nd Ed.) (Hefei:Press of University of Science and Technology of China) pp42-43(in Chinese)[盛新庆2008计算电磁学要论第2版(合肥:中国科学技术大学出版社)第42–43页]

    [21]

    Tai C T 1997 Generalized Vector and Dyadic Analysis (2nd Ed.) (New York:Wiley-Interscience) pp124-127

  • [1] 李亚晖, 梁闰富, 邱俊鹏, 林子扬, 屈军乐, 刘立新, 尹君, 牛憨笨. 紧聚焦条件下相干反斯托克斯拉曼散射信号场的矢量分析.  , 2014, 63(23): 233301. doi: 10.7498/aps.63.233301
    [2] 李兴冀, 兰慕杰, 刘超铭, 杨剑群, 孙中亮, 肖立伊, 何世禹. 偏置条件对NPN及PNP双极晶体管电离辐射损伤的影响研究.  , 2013, 62(9): 098503. doi: 10.7498/aps.62.098503
    [3] 李兴冀, 刘超铭, 孙中亮, 兰慕杰, 肖立伊, 何世禹. 不同粒子辐射条件下CC4013器件辐射损伤研究.  , 2013, 62(5): 058502. doi: 10.7498/aps.62.058502
    [4] 程天海, 顾行发, 余涛, 陈良富, 田国良. 地表双向反射对天基矢量辐射探测的影响分析.  , 2009, 58(10): 7368-7375. doi: 10.7498/aps.58.7368
    [5] 余志强, 谢泉, 肖清泉, 赵珂杰. 基于Bohr-Sommerfeld量子理论的X射线光谱分析.  , 2009, 58(8): 5318-5322. doi: 10.7498/aps.58.5318
    [6] 叶红霞, 金亚秋. 跨界面目标电磁散射Sommerfeld积分的双重广义函数束拟合离散复镜像方法.  , 2009, 58(7): 4579-4589. doi: 10.7498/aps.58.4579
    [7] 曹鹏飞, 程 琳, 张晓萍. 离轴照明下依赖于入射角度的矢量霍普金斯公式.  , 2008, 57(11): 6946-6954. doi: 10.7498/aps.57.6946
    [8] 王 斌, 唐昌建, 刘濮鲲. 离子通道中相对论电子注的切连科夫辐射.  , 2006, 55(11): 5953-5958. doi: 10.7498/aps.55.5953
    [9] 刘春香, 程传福, 任晓荣, 刘 曼, 滕树云, 徐至展. 随机表面散射光场的格林函数法与基尔霍夫近似的比较.  , 2004, 53(2): 427-435. doi: 10.7498/aps.53.427
    [10] 王延申. 可积开边界条件下XXX-1/2自旋链模型的Gaudin公式.  , 2002, 51(7): 1458-1466. doi: 10.7498/aps.51.1458
    [11] 郭立新, 吴振森. 二维分数布朗运动(FBM)随机粗糙面电磁散射的基尔霍夫近似.  , 2001, 50(1): 42-47. doi: 10.7498/aps.50.42
    [12] 青心. 对-谐条件下不存在引力辐射和引力波的研究.  , 2000, 49(2): 194-200. doi: 10.7498/aps.49.194
    [13] 丁 武. 预群聚电子束发出的超辐射脉冲的推迟效应、寿命和相干条件.  , 1999, 48(1): 74-77. doi: 10.7498/aps.48.74
    [14] 李春芳, 郭光灿. 非零几何位相存在的条件及其计算公式.  , 1996, 45(6): 897-903. doi: 10.7498/aps.45.897
    [15] 孙以材, 石俊生. 在矩形样品中Rymaszewski公式的适用条件的分析.  , 1995, 44(12): 1869-1878. doi: 10.7498/aps.44.1869
    [16] 张毅波. 切伦科夫自由电子激光中自发辐射与受激辐射的关系.  , 1987, 36(10): 1344-1348. doi: 10.7498/aps.36.1344
    [17] 洪熙春, 黄维刚, 王绍民. 失调光学系统的衍射积分公式.  , 1982, 31(12): 75-83. doi: 10.7498/aps.31.75
    [18] 吕景发. 关于在各向异性介质中的契连科夫辐射.  , 1965, 21(5): 1083-1088. doi: 10.7498/aps.21.1083
    [19] 吕景发. 各向异性介质中契连科夫辐射的量子理论.  , 1965, 21(5): 1049-1060. doi: 10.7498/aps.21.1049
    [20] 吕景发. 关于具有定向自旋粒子的契连科夫辐射.  , 1964, 20(2): 97-103. doi: 10.7498/aps.20.97
计量
  • 文章访问数:  6713
  • PDF下载量:  333
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-23
  • 修回日期:  2017-06-03
  • 刊出日期:  2017-08-05

/

返回文章
返回
Baidu
map