-
InGaAs/AlGaAs量子阱是中波量子阱红外探测器件最常用的材料体系,本文以结构为2.4 nm In0.35Ga0.65As/40 nm Al0.34Ga0.66As的多量子阱材料为研究对象,利用分子束外延生长,固定InGaAs势阱的生长温度(465℃),然后依次升高分别选取465,500,545,580℃生长AlGaAs势垒层,从而获得四个不同的多量子阱样品.通过荧光光谱以及X射线衍射测试系统分析了势垒层生长温度对InGaAs量子阱发光和质量的影响,并较准确地给出了量子阱大致的温致弛豫轨迹:465500℃,开始出现相分离,但缺陷水平较低,属弹性弛豫阶段;500545℃,相分离加剧并伴随缺陷水平的上升,属弹性弛豫向塑性弛豫过渡阶段;545580℃,相分离以及缺陷水平急剧上升,迅速进入塑性弛豫阶段,尤其是580℃时,量子阱的材料质量被严重破坏.
-
关键词:
- 中波红外探测 /
- 量子阱红外探测器件 /
- InGaAs/AlGaAs多量子阱 /
- 温致弛豫
The InGaAs/AlGaAs quantum wells have been extensively applied to quantum well infrared photodetector of mid-wavelength. In this letter, four samples of 2.4 nm In0.35Ga0.65As/40 nm Al0.34Ga0.66As multi-quantum wells are grown by molecular beam epitaxy with the InGaAs wells growing all at a temperature of 465℃ but the AlGaAs wells growing at temperatures of 465℃, 500℃, 545℃, and 580℃ respectively. The dependence of InGaAs quantum well strain relaxation on the AlGaAs growth temperature is systematically studied by photoluminescence spectroscopy and X-ray diffraction and then the thermal-induced relaxations of three key-stages are clearly observed in the following temperature ranges. 1) 465-500℃ for the stage of elastic relaxation: the phase separation begins to take place with a low defect density; 2) 500-545℃ for the transition stage from elastic relaxation to plastic relaxation: the phase separation will be further intensified with defect density increasing; 3) 545-580℃ for the fast stage dominated by elastic relaxation and the defect density will sharply increase. Especially when AlGaAs temperature increases to 580℃, a very serious plastic relaxation will take place and the InGaAs quantum well will be dramatically destroyed.-
Keywords:
- mid-infrared detection /
- quantum well infrared photodetector /
- InGaAs/AlGaAs multi-quantum wells /
- thermal-induced relaxation
[1] Levine B F, Choi K K, Bethea C G, Walker J, Malik R J 1987 Appl. Phys. Lett. 50 1092
[2] Yuan X Z, Lu W, Li N, Chen X S, Shen X C, Zi J 2003 Acta Phys. Sin. 52 503 (in Chinese) [袁先漳, 陆卫, 李宁, 陈效双, 沈学础, 资剑 2003 52 503]
[3] Levine B F, Bethea C G, Hasnain G, Shen V O, Pelve E, Abbott R R, Hsieh S J 1990 Appl. Phys. Lett. 56 851
[4] Lee S C, Krishna, Brueck S R J 2009 Opt. Express 17 23160
[5] Castellano F, Rossi F, Faist J, Lhuillier E, Berger V 2009 Phys. Rev. B 79 205304
[6] Levine B F 1993 J. Appl. Phys. 74 R1
[7] Nedelcu A, Costard E, Bois P, Marcadet X 2007 Infrared Phys. Technol. 50 227
[8] Li N, Yuan X Z, Li N, Lu W, Li Z F, Dou H F, Shen X C, Jin L, Li H W, Zhou J M, Huang Y 2000 Acta Phys. Sin. 49 797 (in Chinese) [李娜, 袁先漳, 李宁, 陆卫, 李志峰, 窦红飞, 沈学础, 金莉, 李宏伟, 周均铭, 黄绮 2000 49 797]
[9] Gunapala S, Bandara S, Bock J, Ressler M, Liu J, Mumolo J, Rafol S, Ting D, Wemer M 2002 Aerospace Conference Proceedings Montana, American, March 9-16, pp3-1437
[10] Choi K K, Jhabvala M D, Sun J, Jhabvala C A, Waczynski A, Olver K 2013 Appl. Phys. Lett. 103 201113
[11] Costard E, Bois P, de Rossi A, Nedelcu A, Cocle O, Gauthier F H, Audier F 2003 C. R. Phys. 10 1089
[12] Wang L M, Zhang R, Lin Y N, Xu S L 2008 Infrared Laser Eng. S2 570 (in Chinese) [王力民, 张蕊, 林一楠, 徐世录 2008 红外与激光工程 S2 570]
[13] Lourenco M A, Homewood K P, Considine L 1994 Mater. Sci. Eng. B 28 507
[14] Whaley G J, Cohen P I 1990 Appl. Phys. Lett. 57 144
[15] Sasaki T, Suzuki H, Sai A, Takahasi M, Fujikawa S, Kamiya I, Ohshita Y, Yamaguchi M 2011 J. Cryst. Growth 323 13
[16] Quillec M, Goldstein L, Roux G L, Burgeat J, Primot J 1984 J. Appl. Phys. 55 2094
[17] Tanner B K, Parbrook P J, Whitehouse C R, Keir A M, Johnson A D, Jones J, Wallis D, Smith L M, Luun B, Hogg J H C 2001 J. Phys. D: Appl. Phys. 34 A109
[18] Li Q, Wang G T 2010 Appl. Phys. Lett. 97 181107
[19] Zhang G, Ovtchinnikov A, Pessa M 1993 J. Cryst. Growth 127 209
[20] Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K, DenBaars S P 1998 Appl. Phys. lett. 73 1370
[21] Shi Z W, Wang L, Zhen H L, Wang W X, Chen H 2013 Nanoscale Res. Lett. 8 310
-
[1] Levine B F, Choi K K, Bethea C G, Walker J, Malik R J 1987 Appl. Phys. Lett. 50 1092
[2] Yuan X Z, Lu W, Li N, Chen X S, Shen X C, Zi J 2003 Acta Phys. Sin. 52 503 (in Chinese) [袁先漳, 陆卫, 李宁, 陈效双, 沈学础, 资剑 2003 52 503]
[3] Levine B F, Bethea C G, Hasnain G, Shen V O, Pelve E, Abbott R R, Hsieh S J 1990 Appl. Phys. Lett. 56 851
[4] Lee S C, Krishna, Brueck S R J 2009 Opt. Express 17 23160
[5] Castellano F, Rossi F, Faist J, Lhuillier E, Berger V 2009 Phys. Rev. B 79 205304
[6] Levine B F 1993 J. Appl. Phys. 74 R1
[7] Nedelcu A, Costard E, Bois P, Marcadet X 2007 Infrared Phys. Technol. 50 227
[8] Li N, Yuan X Z, Li N, Lu W, Li Z F, Dou H F, Shen X C, Jin L, Li H W, Zhou J M, Huang Y 2000 Acta Phys. Sin. 49 797 (in Chinese) [李娜, 袁先漳, 李宁, 陆卫, 李志峰, 窦红飞, 沈学础, 金莉, 李宏伟, 周均铭, 黄绮 2000 49 797]
[9] Gunapala S, Bandara S, Bock J, Ressler M, Liu J, Mumolo J, Rafol S, Ting D, Wemer M 2002 Aerospace Conference Proceedings Montana, American, March 9-16, pp3-1437
[10] Choi K K, Jhabvala M D, Sun J, Jhabvala C A, Waczynski A, Olver K 2013 Appl. Phys. Lett. 103 201113
[11] Costard E, Bois P, de Rossi A, Nedelcu A, Cocle O, Gauthier F H, Audier F 2003 C. R. Phys. 10 1089
[12] Wang L M, Zhang R, Lin Y N, Xu S L 2008 Infrared Laser Eng. S2 570 (in Chinese) [王力民, 张蕊, 林一楠, 徐世录 2008 红外与激光工程 S2 570]
[13] Lourenco M A, Homewood K P, Considine L 1994 Mater. Sci. Eng. B 28 507
[14] Whaley G J, Cohen P I 1990 Appl. Phys. Lett. 57 144
[15] Sasaki T, Suzuki H, Sai A, Takahasi M, Fujikawa S, Kamiya I, Ohshita Y, Yamaguchi M 2011 J. Cryst. Growth 323 13
[16] Quillec M, Goldstein L, Roux G L, Burgeat J, Primot J 1984 J. Appl. Phys. 55 2094
[17] Tanner B K, Parbrook P J, Whitehouse C R, Keir A M, Johnson A D, Jones J, Wallis D, Smith L M, Luun B, Hogg J H C 2001 J. Phys. D: Appl. Phys. 34 A109
[18] Li Q, Wang G T 2010 Appl. Phys. Lett. 97 181107
[19] Zhang G, Ovtchinnikov A, Pessa M 1993 J. Cryst. Growth 127 209
[20] Cho Y H, Gainer G H, Fischer A J, Song J J, Keller S, Mishra U K, DenBaars S P 1998 Appl. Phys. lett. 73 1370
[21] Shi Z W, Wang L, Zhen H L, Wang W X, Chen H 2013 Nanoscale Res. Lett. 8 310
计量
- 文章访问数: 6573
- PDF下载量: 201
- 被引次数: 0