搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倾斜沙漏流与颗粒休止角研究

张昱 韦艳芳 彭政 蒋亦民 段文山 厚美瑛

引用本文:
Citation:

倾斜沙漏流与颗粒休止角研究

张昱, 韦艳芳, 彭政, 蒋亦民, 段文山, 厚美瑛

Inclined glass-sand flow and the angle of repose

Zhang Yu, Wei Yan-Fang, Peng Zheng, Jiang Yi-Min, Duan Wen-Shan, Hou Mei-Ying
PDF
导出引用
  • 本文发现在测量误差内颗粒物质的下列三个临界角度相等: 1)从直径为D的倾斜孔洞流出的Beverloo颗粒流的流量开始停止的临界倾角c 向大孔径极限线性外推cc(D) 的补角s= 180-c;2) 从靠近堆顶的点源向光滑底板缓慢下落颗粒形成的圆锥形堆的休止角r; 3) 直接剪切矩形颗粒固体测得的库仑内摩擦角. 该结果倾向支持倾斜孔洞和颗粒堆自由表面的固-液转变与颗粒固体内部的库仑屈服均来自材料的同一临界性质. 由于三种情况样品的内部应力和变形等都是目前还远不能定量分析的复杂非均匀分布, 我们仅从定性角度对此给出一些讨论.
    Systematic experimental study on inclined orifice flow and the measurement of the angle of repose are carried out in this work. The inclined orifice flow is formed by glass beads in an inclined channel. The flow is discharged near the bottom of the channel under gravity. The flow rates are measured at various inclination angles of the channel and opening sizes of the orifice. We then record the inclination angle when the rate becomes zero. We compare this zero-rate inclination angle with the repose angle of glass-beads, and the internal friction angle is determined by the yield stress obtained from a direct shear experiment. It is interesting to find that the experimental values at these three measured critical angles are equal within the experimental errors: 1) the supplementary angle of the extrapolating inclined angle at which the flow rate becomes zero and the inclined hole of diameter approaches infinitely large value (i. e. D), s= 180-c, where c is the critical angle for the inclined hole of diameter D and cc(D); 2) the repose angle r of a cone-shaped pile, which is formed when particles fall from the top point of the heap onto a smooth bottom plate; and 3) the internal friction angle that is measured by direct shear experiment. This result intends to support that the solid-liquid transitions occurring in the inclined orifice flow and free surface of granular heap, and the Coulomb yield occurring in the bulk of the granular solid all originate from the same critical property. Owing to the fact that the internal stresses and strains of samples in the three cases all have complicated and nonuniform distributions so that they cannot be analyzed quantitatively at present, Only some qualitative discussion on this issue is given in this paper.
      通信作者: 厚美瑛, mayhou@iphy.ac.cn
    • 基金项目: 地震行业科研经费(批准号: 201208011)、国家自然科学基金(批准号: 11274354, 11047003)和中国科学院空间科学战略性先导科技专项(批准号: XDA04020200)资助的课题.
      Corresponding author: Hou Mei-Ying, mayhou@iphy.ac.cn
    • Funds: Project supported by the Special Fund for Earthquake Research of China (Grant No. 201208011), the National Natural Science Foundation of China (Grant Nos. 11274354, 11047003), and the Strategic Priority Research Program-SJ-10 of the Chinese Academy of Sciences (Grant No. XDA04020200).
    [1]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Mod. Phys. 68 1259

    [2]

    Sheldon H G, Durian D J 2010 Granular Matter 12 579

    [3]

    Thomas C C, Durian D J 2015 Phys. Rev. Lett. 114 178001

    [4]

    Thomas C C, Durian D J 2013 Phys. Rev. E 87 052201

    [5]

    Janda A, Zuriguel I, and Maza D 2012 Phys. Rev. Lett. 108 248001

    [6]

    Peng Z, Jiang Y M 2011 Acta Phys. Sin. 60 054501 [彭政, 蒋亦民 2011 60 054501]

    [7]

    Rubio-Largo S M, Janda A, Maza D, Zuriguel I, Hidalgo R C 2015 Phys. Rev. Lett. 114 238002

    [8]

    Ar'evaloab R, Garcimartnb A, Maza D 2007 Eur. Phys. J. E 23 191

    [9]

    Christian T V, Dimon P 2001 Granular Matter 3 151

    [10]

    Reydellet G, Rioual F E 2000 Europhys. Lett. 51 27

    [11]

    Pennec T L, Ammi M, Messager J C, Valancea A 1999 Eur. Phys. J. B 7 657

    [12]

    Narayanan M, Douglas J D 1997 Science 28 275

    [13]

    Baxter G W, Behringer R P 1989 Phys. Rev. Lett. 62 2825

    [14]

    Beverloo W A, Lengier H A 1961 Chem. Eng. Sci. 15 260

    [15]

    Jaeger H M, Liu C H, Nagel S R 1989 Phys. Rev. Lett. 62 40

    [16]

    Nagel S R 1992 Rev. Mod. Phys. 64 321

    [17]

    Bocquet L, Charlaix E, Ciliberto S, Crassous J 1998 Nature 396 24

    [18]

    Christian M D, Gerald H R, Jamie L M, Masami Nakagawa 1988 Phys. Rev. E 57 4991

    [19]

    Courrech du Pont S, Gondret P, Perrin B, Rabaud M 2003 Europhys. Lett. 61 492

    [20]

    Hornbaker D J, Albert R 1997 Nature 387 765

    [21]

    Tegzes P, Albert R, Paskvan M, Baraba'si A L, Vicsek T, Schiffer P 1999 Phys. Rev. E 60 5823

    [22]

    Boltenhagen P 1999 Eur. Phys. J. B 12 75

    [23]

    Jose M V, Antonio C, Antonio R 2000 Phys. Rev. E 62 6851

    [24]

    Aguirre M A, Nerone N, Calvo A, Ippolito I, Bideau D 2000 Phys. Rev. E 62 738

    [25]

    Albert R, Albert I, Hornbaker D, Schiffer P, Baraba'si A L 1997 Phys. Rev. E 56 6271

    [26]

    Azadeh S, Kudrolli A 2001 Phys. Rev. E 64 051301

    [27]

    Evesque P 1989 Phys. Rev. Lett. 62 44

    [28]

    Tennakoon S G K, Behringer R P 1998 Phys. Rev. Lett. 81 794

    [29]

    Grasselli Y, Herrmann H J 1997 Physica A 246 301

    [30]

    Liu C, Jeager H M, Nagel S R 1991 Phys. Rev. A 43 7091

    [31]

    Bagnold R A 1954 Proc. R. Soc. London A 49 225

    [32]

    Lajeunesse E, Mangeney-Castelnau A, Vilotte J P 2004 Phys. Fluids 16 2371

    [33]

    Liu Z C 2008 Measuring the Angle of Repose of Granular Systems Using Hollow Cylinders (New York: Academic Press) pp33-40

    [34]

    Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 Phys. Rev. E 85 031306

    [35]

    Khidas Y, Jia X 2009 Sound Scattering in Dense Granular Media (Beijing: Science Press) pp4328-4336

    [36]

    Schwedes J 2003 Granular Matter 5 1

  • [1]

    Jaeger H M, Nagel S R, Behringer R P 1996 Rev. Mod. Phys. 68 1259

    [2]

    Sheldon H G, Durian D J 2010 Granular Matter 12 579

    [3]

    Thomas C C, Durian D J 2015 Phys. Rev. Lett. 114 178001

    [4]

    Thomas C C, Durian D J 2013 Phys. Rev. E 87 052201

    [5]

    Janda A, Zuriguel I, and Maza D 2012 Phys. Rev. Lett. 108 248001

    [6]

    Peng Z, Jiang Y M 2011 Acta Phys. Sin. 60 054501 [彭政, 蒋亦民 2011 60 054501]

    [7]

    Rubio-Largo S M, Janda A, Maza D, Zuriguel I, Hidalgo R C 2015 Phys. Rev. Lett. 114 238002

    [8]

    Ar'evaloab R, Garcimartnb A, Maza D 2007 Eur. Phys. J. E 23 191

    [9]

    Christian T V, Dimon P 2001 Granular Matter 3 151

    [10]

    Reydellet G, Rioual F E 2000 Europhys. Lett. 51 27

    [11]

    Pennec T L, Ammi M, Messager J C, Valancea A 1999 Eur. Phys. J. B 7 657

    [12]

    Narayanan M, Douglas J D 1997 Science 28 275

    [13]

    Baxter G W, Behringer R P 1989 Phys. Rev. Lett. 62 2825

    [14]

    Beverloo W A, Lengier H A 1961 Chem. Eng. Sci. 15 260

    [15]

    Jaeger H M, Liu C H, Nagel S R 1989 Phys. Rev. Lett. 62 40

    [16]

    Nagel S R 1992 Rev. Mod. Phys. 64 321

    [17]

    Bocquet L, Charlaix E, Ciliberto S, Crassous J 1998 Nature 396 24

    [18]

    Christian M D, Gerald H R, Jamie L M, Masami Nakagawa 1988 Phys. Rev. E 57 4991

    [19]

    Courrech du Pont S, Gondret P, Perrin B, Rabaud M 2003 Europhys. Lett. 61 492

    [20]

    Hornbaker D J, Albert R 1997 Nature 387 765

    [21]

    Tegzes P, Albert R, Paskvan M, Baraba'si A L, Vicsek T, Schiffer P 1999 Phys. Rev. E 60 5823

    [22]

    Boltenhagen P 1999 Eur. Phys. J. B 12 75

    [23]

    Jose M V, Antonio C, Antonio R 2000 Phys. Rev. E 62 6851

    [24]

    Aguirre M A, Nerone N, Calvo A, Ippolito I, Bideau D 2000 Phys. Rev. E 62 738

    [25]

    Albert R, Albert I, Hornbaker D, Schiffer P, Baraba'si A L 1997 Phys. Rev. E 56 6271

    [26]

    Azadeh S, Kudrolli A 2001 Phys. Rev. E 64 051301

    [27]

    Evesque P 1989 Phys. Rev. Lett. 62 44

    [28]

    Tennakoon S G K, Behringer R P 1998 Phys. Rev. Lett. 81 794

    [29]

    Grasselli Y, Herrmann H J 1997 Physica A 246 301

    [30]

    Liu C, Jeager H M, Nagel S R 1991 Phys. Rev. A 43 7091

    [31]

    Bagnold R A 1954 Proc. R. Soc. London A 49 225

    [32]

    Lajeunesse E, Mangeney-Castelnau A, Vilotte J P 2004 Phys. Fluids 16 2371

    [33]

    Liu Z C 2008 Measuring the Angle of Repose of Granular Systems Using Hollow Cylinders (New York: Academic Press) pp33-40

    [34]

    Zhang Q, Li Y C, Hou M Y, Jiang Y M, Liu M 2012 Phys. Rev. E 85 031306

    [35]

    Khidas Y, Jia X 2009 Sound Scattering in Dense Granular Media (Beijing: Science Press) pp4328-4336

    [36]

    Schwedes J 2003 Granular Matter 5 1

  • [1] 胡军容, 孔鹏, 毕仁贵, 邓科, 赵鹤平. 声学蜂窝结构中的拓扑角态.  , 2022, 71(5): 054301. doi: 10.7498/aps.71.20211848
    [2] 祁科武, 赵宇宏, 田晓林, 彭敦维, 孙远洋, 侯华. 取向角对小角度非对称倾斜晶界位错运动影响的晶体相场模拟.  , 2020, 69(14): 140504. doi: 10.7498/aps.69.20200133
    [3] 谢文韬, 李若如, 彭政, 蒋亦民. 水中颗粒孔洞流的最大休止倾角和流量公式.  , 2020, 69(10): 104501. doi: 10.7498/aps.69.20200217
    [4] 张冬冬, 谭建国, 李浩, 侯聚微. 基于三角波瓣混合器的超声速流场精细结构和掺混特性.  , 2017, 66(10): 104702. doi: 10.7498/aps.66.104702
    [5] 张志东, 高思敏, 王辉, 王红艳. 三角缺口正三角形纳米结构的共振模式.  , 2014, 63(12): 127301. doi: 10.7498/aps.63.127301
    [6] 陈冉, 刘阿娣, 邵林明, 胡广海, 金晓丽. 使用基于动态程序规划的时间延迟法分析直线磁化等离子体漂移波湍流角向传播速度和带状流结构.  , 2014, 63(18): 185201. doi: 10.7498/aps.63.185201
    [7] 贾汝娟, 王苍龙, 杨阳, 苟学强, 陈建敏, 段文山. 二维Frenkel-Kontorova模型中六角对称结构的摩擦现象.  , 2013, 62(6): 068104. doi: 10.7498/aps.62.068104
    [8] 刘伟, 郭立新, 孟肖, 郑帆. 沙丘粗糙面的二次极化电磁散射.  , 2013, 62(14): 144213. doi: 10.7498/aps.62.144213
    [9] 吕健, 杨光. 轴矢介子的质量和混合角.  , 2011, 60(10): 101201. doi: 10.7498/aps.60.101201
    [10] 彭政, 蒋亦民. 颗粒孔洞流的最大休止倾角和流量公式.  , 2011, 60(5): 054501. doi: 10.7498/aps.60.054501
    [11] 柳 强, 巩马理, 李 晨, 宫武鹏, 陆富源, 陈 刚. 角抽运Yb:YAG激光器.  , 2005, 54(2): 721-725. doi: 10.7498/aps.54.721
    [12] 周进元, 李丽云, 叶朝辉. 特形脉冲Euler角的数值计算.  , 1996, 45(7): 1107-1112. doi: 10.7498/aps.45.1107
    [13] 朱栋培, 王桂星, 王仁川. 量子混合态的统计角.  , 1992, 41(4): 543-549. doi: 10.7498/aps.41.543
    [14] 史新, 李新洲. 立体欠缺角和排斥力.  , 1991, 40(3): 353-358. doi: 10.7498/aps.40.353
    [15] 李宗全, 张立德, 何怡贞. 六角结构金属α—Ti中的小角晶界.  , 1985, 34(8): 1064-1067. doi: 10.7498/aps.34.1064
    [16] 舒昌清, 徐刚, 林磊. 液晶孤子实验中指向角的时空分布.  , 1985, 34(1): 88-96. doi: 10.7498/aps.34.88
    [17] 叶朝辉, 裘鉴卿, 李丽云, 孙伯勤. 魔角的准确快速确定.  , 1984, 33(12): 1680-1686. doi: 10.7498/aps.33.1680
    [18] 邝宇平, 马中骐, 许伯威, 易余萍. Cabibbo角的规范理论.  , 1975, 24(4): 291-300. doi: 10.7498/aps.24.291
    [19] 邓稼先, 何作庥. β-中微子角关联,β-r角关联和β-能谱因子.  , 1956, 12(2): 96-126. doi: 10.7498/aps.12.96
    [20] 潘家铮. 角变位移方程的研究.  , 1955, 11(4): 317-338. doi: 10.7498/aps.11.317
计量
  • 文章访问数:  6709
  • PDF下载量:  456
  • 被引次数: 0
出版历程
  • 收稿日期:  2015-11-25
  • 修回日期:  2015-12-22
  • 刊出日期:  2016-04-05

/

返回文章
返回
Baidu
map