搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

胆甾相和蓝相液晶的透射和反射特性

窦虎 马红梅 孙玉宝

引用本文:
Citation:

胆甾相和蓝相液晶的透射和反射特性

窦虎, 马红梅, 孙玉宝

Transmittance and reflectance of cholesteric and blue phase liquid crystal

Dou Hu, Ma Hong-Mei, Sun Yu-Bao
PDF
导出引用
  • 针对蓝相液晶显示器中的暗态漏光特性, 采用时域有限差分方法模拟计算了胆甾相液晶的平面态和焦锥态以及蓝相II态液晶的透射和反射特性, 得到了它们在正交和平行偏振片之间的漏光, 并提出了计算等效旋光能力的公式以比较它们的旋光能力. 通过对比焦锥态和蓝相液晶的旋光能力和漏光特性发现, 采用焦锥态替代蓝相液晶而得到良好的暗态特性是一种可行的方法. 通过研究它们的布拉格反射特性, 得知蓝相液晶的布拉格反射与平面态相似, 但反射强度小, 焦锥态无明显的布拉格反射特性.
    Blue phase liquid crystal display (BPLCD) is emerging as next-generation display, because of its fast response speed and very wide viewing angle. However, it has some weak points to be improved. The light leakage at the dark state affects the contrast ratio, and needs to be analyzed and improved. Considering the double-twist structure of blue phase liquid crystal (BPLC) and the simple twist structure of cholesteric liquid crystal (ChLC), the two twist structures are similar. The transmittances and reflectances of planar and focal conic texture of cholesteric liquid crystal and blue phase II liquid crystal are simulated by finite-difference time domain (FDTD) method. The FDTD method is based on the Maxwell’s equation, and can calculate the optical rotatory power directly. The effective optical rotatory powers of the three liquid crystal states are proposed and compared using the light leakages at the cell with crossed and parallel polarizers. The results show that the transmittance of BPLC with crossed polarizers is lower than that of planar texture and larger than that of focal conic texture of ChLC. The optical rotation of BPLC is not the same at any point in one periodic cross section in the light path because the liquid crystal arrangement is complex, the effective optical rotatory power is defined as the average value of the optical rotatory powers at all points. Comparing with the optical rotatory powers of planar and focal conic textures of ChLC, the optical rotatory power of BPLC is less than that of planar texture and larger than that of focal conic texture. Moreover, the Bragg reflections are also simulated, the results show that blue phase liquid crystal is similar to planar state cholesteric liquid crystal, only the reflection intensity is smaller, and no obvious Bragg reflection appears in focal conic state cholesteric liquid crystal. Considering the optical rotation and Bragg reflection, the light leakage and reflective light of BPLCD cannot be ignored if the helix pitch is not less enough, however, these of focal conic texture of ChLC are very small compared with those of BPLC, as a result, the focal conic texture of ChLC can replace blue phase liquid crystal to obtain the good dark state and high contrast ratio.
    • 基金项目: 国家自然科学基金(批准号:61475042,11304074,11274088)和教育部新世纪优秀人才计划项目(批准号:NCET-11-0931)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475042, 11304074, 11274088) and the Program for New Century Excellent Talents in University of Ministry of Education of China (Grant No. NCET-11-0931).
    [1]

    Ge Z, Gauza S, Jiao M, Xianyu H, Wu S T 2009 Appl. Phys. Lett. 94 101104

    [2]

    Chen K M, Gauza S, Xianyu H, Wu S T 2010 J. Display Technol. 6 49

    [3]

    Li Y, Jiao M, Wu S T 2010 Opt. Express 18 16486

    [4]

    Dupuis A, Marenduzzo D, Yeomans J M 2005 Phys. Rev. E 71 011703

    [5]

    Liu Y, Lan Y F, Zhang H, Zhu R, Xu D, Tsai C Y, Lu J, Sugiura N, Lin Y, Wu S T 2013 Appl. Phys. Lett. 102 131102

    [6]

    Yan J, Luo Z, Wu S T, Shiu J W, Lai Y C, Cheng K L, Liu S H, Hsieh P J, Tsai Y C 2013 Appl. Phys. Lett. 102 011113

    [7]

    Yang D K, Chien L C, Doane J W 1992 Appl. Phys. Lett. 60 3102

    [8]

    Kopp V I, Fan B, Vithana H K M, Genack A Z 1998 Opt. Lett. 23 1707

    [9]

    Matsui T, Ozaki R, Funamoto K, Ozaki M, Yoshino K 2002 Appl. Phys. Lett. 81 3741

    [10]

    Shim K S, Heo J U, Jo S I, Lee Y J, Kim H R, Kim J H, Yu C J 2014 Opt. Express 22 15467

    [11]

    Deng L G, Zhao Z L 2009 Acta Phys. Sin. 58 7773 (in Chinese) [邓罗根, 赵找栗 2009 58 7773]

    [12]

    Huang X Y, Yang D K, Bos P J, Doane J W 1995 J. Soc. Inf. Display 3 165

    [13]

    Hashimoto K, Okada M, Nishiguchi K, Masazumi N, Yamakawa E, Taniguchi T 1998 J. Soc. Inf. Display 6 239

    [14]

    John W S, Fritz W J, Lu Z J, Yang D K 1995 Phys. Rev. E 51 1191

    [15]

    Korpel A 1978 Appl. Opt. 17 2037

    [16]

    Yang D K, Wu S T 2006 Fundamentals of Liquid Crystal Display (Chichester: John Wiley & Sons, Ltd)

    [17]

    Yang P, Liou K N 1996 J. Opt. Soc. Am. A 13 2072

    [18]

    Kriezis E E, Elston S J 1999 Opt. Commun. 165 99

    [19]

    Kriezis E E, Elston S J 2000 Opt. Commun. 177 69

    [20]

    Ogawa Y, Fukuda J, Yoshida H, Ozaki M 2013 Opt. Lett. 9 3380

    [21]

    Dou H, Yu Y N, Ma H M, Sun Y B 2015 Chin. J. Liq. Cryst. Disp. 30 16 (in Chinese) [窦虎, 于亚楠, 马红梅, 孙玉宝 2015 液晶与显示 30 16]

    [22]

    Lan Y F, Liu Y, Huang P J, Xu D, Tsai C Y, Lin C H, Sugiura N, Wu S T 2014 App. Phys. Lett. 105 011903

  • [1]

    Ge Z, Gauza S, Jiao M, Xianyu H, Wu S T 2009 Appl. Phys. Lett. 94 101104

    [2]

    Chen K M, Gauza S, Xianyu H, Wu S T 2010 J. Display Technol. 6 49

    [3]

    Li Y, Jiao M, Wu S T 2010 Opt. Express 18 16486

    [4]

    Dupuis A, Marenduzzo D, Yeomans J M 2005 Phys. Rev. E 71 011703

    [5]

    Liu Y, Lan Y F, Zhang H, Zhu R, Xu D, Tsai C Y, Lu J, Sugiura N, Lin Y, Wu S T 2013 Appl. Phys. Lett. 102 131102

    [6]

    Yan J, Luo Z, Wu S T, Shiu J W, Lai Y C, Cheng K L, Liu S H, Hsieh P J, Tsai Y C 2013 Appl. Phys. Lett. 102 011113

    [7]

    Yang D K, Chien L C, Doane J W 1992 Appl. Phys. Lett. 60 3102

    [8]

    Kopp V I, Fan B, Vithana H K M, Genack A Z 1998 Opt. Lett. 23 1707

    [9]

    Matsui T, Ozaki R, Funamoto K, Ozaki M, Yoshino K 2002 Appl. Phys. Lett. 81 3741

    [10]

    Shim K S, Heo J U, Jo S I, Lee Y J, Kim H R, Kim J H, Yu C J 2014 Opt. Express 22 15467

    [11]

    Deng L G, Zhao Z L 2009 Acta Phys. Sin. 58 7773 (in Chinese) [邓罗根, 赵找栗 2009 58 7773]

    [12]

    Huang X Y, Yang D K, Bos P J, Doane J W 1995 J. Soc. Inf. Display 3 165

    [13]

    Hashimoto K, Okada M, Nishiguchi K, Masazumi N, Yamakawa E, Taniguchi T 1998 J. Soc. Inf. Display 6 239

    [14]

    John W S, Fritz W J, Lu Z J, Yang D K 1995 Phys. Rev. E 51 1191

    [15]

    Korpel A 1978 Appl. Opt. 17 2037

    [16]

    Yang D K, Wu S T 2006 Fundamentals of Liquid Crystal Display (Chichester: John Wiley & Sons, Ltd)

    [17]

    Yang P, Liou K N 1996 J. Opt. Soc. Am. A 13 2072

    [18]

    Kriezis E E, Elston S J 1999 Opt. Commun. 165 99

    [19]

    Kriezis E E, Elston S J 2000 Opt. Commun. 177 69

    [20]

    Ogawa Y, Fukuda J, Yoshida H, Ozaki M 2013 Opt. Lett. 9 3380

    [21]

    Dou H, Yu Y N, Ma H M, Sun Y B 2015 Chin. J. Liq. Cryst. Disp. 30 16 (in Chinese) [窦虎, 于亚楠, 马红梅, 孙玉宝 2015 液晶与显示 30 16]

    [22]

    Lan Y F, Liu Y, Huang P J, Xu D, Tsai C Y, Lin C H, Sugiura N, Wu S T 2014 App. Phys. Lett. 105 011903

  • [1] 周康, 袁从龙, 李萧, 王骁乾, 沈冬, 郑致刚. 蓝相液晶指向有序的定域化及微结构制备.  , 2018, 67(6): 066101. doi: 10.7498/aps.67.20172517
    [2] 岱钦, 吴杰, 邬小娇, 乌日娜, 彭增辉, 李大禹. 染料掺杂聚合物分散胆甾相液晶薄膜激光特性研究.  , 2015, 64(1): 016101. doi: 10.7498/aps.64.016101
    [3] 李萌, 牛贺莹, 姚路炎, 王栋梁, 周忠坡, 马恒. 胆甾液晶掺杂活性层对有机太阳能电池性能的影响.  , 2014, 63(24): 248403. doi: 10.7498/aps.63.248403
    [4] 岱钦, 李勇, 乌日娜, 耿岳, 全薇, 李业秋, 彭增辉, 姚丽双. 楔形盒染料掺杂胆甾相液晶激光器研究.  , 2013, 62(4): 044219. doi: 10.7498/aps.62.044219
    [5] 刘永军, 王斐儒, 孙伟民, 刘晓颀, 张伶莉. 胆甾相液晶激光器的调谐特性研究.  , 2013, 62(7): 076101. doi: 10.7498/aps.62.076101
    [6] 兰峰, 杨梓强, 史宗君. 带有锥度结构的同轴开槽布拉格反射器研究.  , 2011, 60(9): 091101. doi: 10.7498/aps.60.091101
    [7] 胡昕, 张继彦, 杨国洪, 刘慎业, 丁永坤. 基于布拉格反射镜的X射线多色单能成像谱仪.  , 2009, 58(9): 6397-6402. doi: 10.7498/aps.58.6397
    [8] 吴犇, 张会, 朱良栋, 郭澎, 王倩, 高润梅, 常胜江. 基于布拉格光纤的磁场调制液晶太赫兹开关.  , 2009, 58(3): 1838-1843. doi: 10.7498/aps.58.1838
    [9] 邓罗根, 赵找栗. 横向电场对平面织构胆甾相液晶螺距及反射特性的影响.  , 2009, 58(11): 7773-7780. doi: 10.7498/aps.58.7773
    [10] 展凯云, 裴延波, 侯春风. 向列相液晶中空间光孤子的观测.  , 2006, 55(9): 4686-4690. doi: 10.7498/aps.55.4686
    [11] 刘 红, 王 慧. 双轴性向列相液晶的相变理论.  , 2005, 54(3): 1306-1312. doi: 10.7498/aps.54.1306
    [12] 毕亚军, 杨国琛, 关荣华. 液晶胆甾相的形成机制.  , 2004, 53(12): 4287-4292. doi: 10.7498/aps.53.4287
    [13] 刘红. 双轴向列相液晶的表面能.  , 2002, 51(12): 2786-2792. doi: 10.7498/aps.51.2786
    [14] 韩 冰, 杨国琛. 胆甾相液晶的相诱导双轴性 .  , 2000, 49(1): 38-44. doi: 10.7498/aps.49.38
    [15] 钱祥忠. 液晶SmC*相的螺距与手征中心分布.  , 1998, 47(4): 664-671. doi: 10.7498/aps.47.664
    [16] 钱祥忠. 液晶SmC*相自发极化的统计理论.  , 1997, 46(9): 1788-1795. doi: 10.7498/aps.46.1788
    [17] 钱祥忠. 液晶SmC*相螺旋结构的统计理论.  , 1996, 45(7): 1168-1177. doi: 10.7498/aps.45.1168
    [18] 钱祥忠. 液晶近晶C相双轴特性的统计理论.  , 1995, 44(8): 1192-1202. doi: 10.7498/aps.44.1192
    [19] 杨国琛, 张志东, 赵同军. 液晶胆甾相的统计理论.  , 1995, 44(4): 512-523. doi: 10.7498/aps.44.512
    [20] 杨国琛, 钱祥忠. 液晶近晶C相的统计理论.  , 1993, 42(4): 551-562. doi: 10.7498/aps.42.551
计量
  • 文章访问数:  6938
  • PDF下载量:  6365
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-12-24
  • 修回日期:  2015-03-01
  • 刊出日期:  2015-06-05

/

返回文章
返回
Baidu
map