-
采用传统的高温固相烧结法制备了双层钙钛矿锰氧化物(La1-xGdx)4/3Sr5/3Mn2 O7 (x=0, 0.025)多晶样品. 通过X射线衍射仪研究发现样品为Sr3Ti2O7型四方结构, 空间群为I4/mmm; 磁性测量表明, Gd3+掺杂后的样品(La0.975Gd0.025)4/3Sr5/3Mn2O7的三维磁有序转变温度(TC13D)、磁化强度(M)均降低, 这是由于Gd3+的掺杂引起晶格的畸变, 从而使得晶格常数发生改变, 减弱了铁磁耦合而导致的; 通过电子自旋共振谱测量发现, 在TC3DTTC13D (La4/3Sr5/3Mn2O7 样品的三维磁有序转变温度, TC03D)T3+的掺杂使得载流子局域长度的减小. 这表明载流子需要吸收更多的能量才能克服晶格的束缚进行跳跃, 因此(La0.975Gd0.025)4/3Sr5/3Mn2 O7 样品的电阻较高.The polycrystalline samples of two-layered perovskite manganites (La1-xGdx)4/3Sr5/3Mn2O7 (x=0, 0.025) are prepared by traditional solid state reaction method. X-ray diffraction measurements show that both samples are of the Sr3Ti2O7 -type tetragonal phase (space groups I4/mmm). Magnetic measurements show that Gd3+ doping reduces the magnetic transition temperature (TC3D) and magnetization (M) of the doped sample (La0.975Gd0.025)4/3Sr5/3Mn2O7, which is because Gd3+ doping induces lattice distortion and change the lattice constant, and subsequently weakens the double exchange interactions. It is found from electron spin resonance measurements that short-range ferromagnetic clusters appear in the paramagnetic background of both samples at temperatures TC3DTTC3DT0.975Gd0.025)4/3Sr5/3Mn2O7 has a higher resistance. This is because Gd3+ doping reduces the localization length of carriers, and makes conducting carriers absorb more energy to overcome the bound potentials in the lattice.
-
Keywords:
- perovskite manganites /
- phase separation /
- double exchange
[1] Xiang J Y, Wang Z G, Xu B, Sun Y B, Wu H Y, Zhao J J, Lu Y 2014 Acta Phys. Sin. 63 157501 (in Chinese) [向俊尤, 王志国, 徐宝, 孙运斌, 吴鸿业, 赵建军, 鲁毅 2014 63 157501]
[2] Han L A, Chen C L, Dong H Y, Wang J Y, Gao G M, Luo B C 2008 Acta Phys. Sin. 57 541 (in Chinese) [韩立安, 陈长乐, 董慧迎, 王建元, 高国棉, 罗炳成 2008 57 541]
[3] Mitchell J F, Argyriou D N, Jorgensen J D, Hinks D G, Potter C D, Bader S D 1997 Phys. Rev. B 55 63
[4] Yang R F, Sun Y, He W, Li Q A, Cheng Z H 2007 Appl. Phys. Lett. 90 032502
[5] Liu L, Zhang L J, Niu L Y, Liu S, Xia Z C, Yuan S L 2005 Mater. Sci. Eng. B 117 227
[6] Kimura T, Tomioka Y, Kuwahara H, Asamitsu A, Tamura M, Tokura Y 1996 Science 274 1698
[7] Hirota K, Ishihara S, Fujioka H, Kubota M, Yoshizawa H, Moritomo Y, Endoh Y, Maekawa S 2002 Phys. Rev. B 65 064414
[8] Argyriou D N, Mitchell J F, Radaelli P G, Bordallo H N, Cox D E, Medarde M, Jorgensen J D 1999 Phys. Rev. B 59 8695
[9] Moritomo Y, Asanutsy A, Kuwahara H, Tokura Y 1996 Nature 380 141
[10] Liu L, Xia Z C, Yuan S L 2006 Mater. Sci. Eng. B 127 55
[11] Zhou M, Wu H Y, Wang H J, Zheng L, Zhao J J, Xing R, Lu Y 2012 Physica B 407 2219
[12] Perring T G, Aeppli G, Moritomo Y, Tokura Y 1997 Phys. Rev. Lett. 78 3197
[13] Deisenhofer J, Braak D, Krug von Nidda H A, Hemberger J, Eremina R M, Ivanshin V A, Balbashov A M, Jug G, Loidl A, Kimura T, Tokura Y 2005 Phys. Rev. Lett. 95 257202
[14] Zhao J J, Lu Y, Haosi B Y, Xing R, Yang R F, Li Q A, Sun Y, Cheng Z H 2008 Chin. Phys. B 17 2717
[15] Chattopadhyay S, Giri S, Majumdar S 2012 J. Appl. Phys. 112 083915
[16] He L M, Ji Y, Wu H Y, Xu B, Sun Y B, Zhang X F, Lu Y, Zhao J J 2014 Chin. Phys. B 23 077601
[17] He L M, Ji Y, Lu Y, Wu H Y, Zhang X F, Zhao J J 2014 Acta Phys. Sin. 63 147503 (in Chinese) [何利民, 冀钰, 鲁毅, 吴鸿业, 张雪峰, 赵建军 2014 63 147503]
[18] Shannon R D, Prewitt C T 1976 Acted Crystallogr. 32 751
[19] Battle P D, Green M A, Laskey N S, Kasmir N, Millburn J E, Spring L E, Sullivan S P, Rosseinsky M J, Vente J F 1997 Mater. Chem. 7 977
[20] Goodenough J B, Zhou J S 1997 Nature 386 229
-
[1] Xiang J Y, Wang Z G, Xu B, Sun Y B, Wu H Y, Zhao J J, Lu Y 2014 Acta Phys. Sin. 63 157501 (in Chinese) [向俊尤, 王志国, 徐宝, 孙运斌, 吴鸿业, 赵建军, 鲁毅 2014 63 157501]
[2] Han L A, Chen C L, Dong H Y, Wang J Y, Gao G M, Luo B C 2008 Acta Phys. Sin. 57 541 (in Chinese) [韩立安, 陈长乐, 董慧迎, 王建元, 高国棉, 罗炳成 2008 57 541]
[3] Mitchell J F, Argyriou D N, Jorgensen J D, Hinks D G, Potter C D, Bader S D 1997 Phys. Rev. B 55 63
[4] Yang R F, Sun Y, He W, Li Q A, Cheng Z H 2007 Appl. Phys. Lett. 90 032502
[5] Liu L, Zhang L J, Niu L Y, Liu S, Xia Z C, Yuan S L 2005 Mater. Sci. Eng. B 117 227
[6] Kimura T, Tomioka Y, Kuwahara H, Asamitsu A, Tamura M, Tokura Y 1996 Science 274 1698
[7] Hirota K, Ishihara S, Fujioka H, Kubota M, Yoshizawa H, Moritomo Y, Endoh Y, Maekawa S 2002 Phys. Rev. B 65 064414
[8] Argyriou D N, Mitchell J F, Radaelli P G, Bordallo H N, Cox D E, Medarde M, Jorgensen J D 1999 Phys. Rev. B 59 8695
[9] Moritomo Y, Asanutsy A, Kuwahara H, Tokura Y 1996 Nature 380 141
[10] Liu L, Xia Z C, Yuan S L 2006 Mater. Sci. Eng. B 127 55
[11] Zhou M, Wu H Y, Wang H J, Zheng L, Zhao J J, Xing R, Lu Y 2012 Physica B 407 2219
[12] Perring T G, Aeppli G, Moritomo Y, Tokura Y 1997 Phys. Rev. Lett. 78 3197
[13] Deisenhofer J, Braak D, Krug von Nidda H A, Hemberger J, Eremina R M, Ivanshin V A, Balbashov A M, Jug G, Loidl A, Kimura T, Tokura Y 2005 Phys. Rev. Lett. 95 257202
[14] Zhao J J, Lu Y, Haosi B Y, Xing R, Yang R F, Li Q A, Sun Y, Cheng Z H 2008 Chin. Phys. B 17 2717
[15] Chattopadhyay S, Giri S, Majumdar S 2012 J. Appl. Phys. 112 083915
[16] He L M, Ji Y, Wu H Y, Xu B, Sun Y B, Zhang X F, Lu Y, Zhao J J 2014 Chin. Phys. B 23 077601
[17] He L M, Ji Y, Lu Y, Wu H Y, Zhang X F, Zhao J J 2014 Acta Phys. Sin. 63 147503 (in Chinese) [何利民, 冀钰, 鲁毅, 吴鸿业, 张雪峰, 赵建军 2014 63 147503]
[18] Shannon R D, Prewitt C T 1976 Acted Crystallogr. 32 751
[19] Battle P D, Green M A, Laskey N S, Kasmir N, Millburn J E, Spring L E, Sullivan S P, Rosseinsky M J, Vente J F 1997 Mater. Chem. 7 977
[20] Goodenough J B, Zhou J S 1997 Nature 386 229
计量
- 文章访问数: 6638
- PDF下载量: 271
- 被引次数: 0