搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

参数不确定统一混沌系统的鲁棒分数阶比例-微分控制

路永坤

引用本文:
Citation:

参数不确定统一混沌系统的鲁棒分数阶比例-微分控制

路永坤

Robust fractional-order proportional-derivative control of unified chaotic systems with parametric uncertainties

Lu Yong-Kun
PDF
导出引用
  • 针对含参数不确定的整数阶统一混沌系统, 提出一种鲁棒分数阶比例-微分(PDμ)控制. 通过变换将受控统一混沌系统转换成等效被控对象及其等效控制器. 针对等效被控对象, 基于一种改进Monje-Vinagre方法并考虑到求解性能约束方程组的复杂度, 设计了鲁棒PDμ控制器. 通过基于最小相角边界传递函数和最大增益边界传递函数的设计约束来保证受控统一混沌系统对参数不确定性的鲁棒性能. 数值仿真验证了所提出方法的有效性.
    In this paper, a robust fractional-order proportional-derivative (PDμ) control is designed for controling in integer-order unified chaotic systems with parametric uncertainties. Equivalent plant is obtained by transforming the controlled dynamic system, and then the PDμ controller as an equivalent controller is applied to the equivalent plant. In the uncertain controlled unified chaotic systems, one equation is certain, and the other two equations are uncertain . The equivalent controller for the certain system is then designed based on a fractional-order proportional-derivative controller, in which three specifications for phase margin, gain crossover frequency, and robustness should be met. On the other hand, the robustness of uncertain systems is achieved by an improved Monje-Vinagre tuning method, however, the pre-specified frequency band should be replaced by the gain crossover frequency in order to reduce the complexity in determining the controllers for the uncertain systems. Specifications related to phase margin for the lower bound of the phase, gain crossover frequency for the upper bound of the gain, and robustness for the lower bound of the phase constraints are satisfied by the uncertain system. Parameters of the equivalent controller are determined based on a graphical method. Origins of the unstable equilibrium can be asymptotically stabilized by the proposed strategy for the integer-order unified chaotic systems with parametric uncertainties. Numerical simulation examples for Chen system, L system, and Lorenz system, are given to show the effectiveness of the proposed method.
    • 基金项目: 天津市高等学校科技发展基金计划(批准号: 20130722)资助的课题.
    • Funds: Project supported by the Science and Technology Development Foundation of the Higher Education Institutions of Tianjin Municipality of China (Grant No. 20130722).
    [1]

    Smaoui N, Karouma A, Zribi M 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 3279

    [2]

    Cheng C 2012 Applied Mathematics and Computation 219 2698

    [3]

    Wang H, Han Z, Xie Q, Zhang W 2009 Nonlinear Dynamics 55 323

    [4]

    Wei W, Li D H, Wang J 2011 Chin. Phys. B 20 040510

    [5]

    Wang H, Chen B, Lin C 2013 ICIC Express Letters 7 423

    [6]

    Mohan J J, Deekshitulu G V S R 2012 International Journal of Differential Equations 2012 780619

    [7]

    Hu J B, Zhao L D 2013 Acta Phys. Sin. 62 240504 (in Chinese) [胡建兵, 赵灵东 2013 62 240504]

    [8]

    Yang J, Qi D L 2010 Chin. Phys. B 19 020508

    [9]

    Liu J, Li X, Zhao J 2011 Proceedings of the 2011 Chinese Control and Decision Conference Mianyang, China, May 23-25, 2011 p2093

    [10]

    Qi D L, Wang Q, Yang J 2011 Chin. Phys. B 20 100505

    [11]

    Zou D, Gao L, Li S 2014 ICIC Express Letters 8 2745

    [12]

    Hung M L, Lin J S, Yan J J, Liao T L 2008 Chaos, Solitons and Fractals 35 781

    [13]

    Niu P F, Zhang J, Guan X P 2007 Acta Phys. Sin. 56 3759 (in Chinese) [牛培峰, 张君, 关新平 2007 56 3759]

    [14]

    Monje C A, Vinagre B M, Feliu V, Chen Y 2008 Control Engineering Practice 16 798

    [15]

    Li H S, Luo Y, Chen Y Q 2010 IEEE Transactions on Control Systems Technology 18 516

    [16]

    Vinopraba T, Sivakumaran N, Narayanan S, Radhakrishnan T K 2012 Journal of Control Theory and Applications 10 297

    [17]

    Gao X, Liu X W 2007 Acta Phys. Sin. 56 84 (in Chinese) [高心, 刘兴文 2007 56 84]

  • [1]

    Smaoui N, Karouma A, Zribi M 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 3279

    [2]

    Cheng C 2012 Applied Mathematics and Computation 219 2698

    [3]

    Wang H, Han Z, Xie Q, Zhang W 2009 Nonlinear Dynamics 55 323

    [4]

    Wei W, Li D H, Wang J 2011 Chin. Phys. B 20 040510

    [5]

    Wang H, Chen B, Lin C 2013 ICIC Express Letters 7 423

    [6]

    Mohan J J, Deekshitulu G V S R 2012 International Journal of Differential Equations 2012 780619

    [7]

    Hu J B, Zhao L D 2013 Acta Phys. Sin. 62 240504 (in Chinese) [胡建兵, 赵灵东 2013 62 240504]

    [8]

    Yang J, Qi D L 2010 Chin. Phys. B 19 020508

    [9]

    Liu J, Li X, Zhao J 2011 Proceedings of the 2011 Chinese Control and Decision Conference Mianyang, China, May 23-25, 2011 p2093

    [10]

    Qi D L, Wang Q, Yang J 2011 Chin. Phys. B 20 100505

    [11]

    Zou D, Gao L, Li S 2014 ICIC Express Letters 8 2745

    [12]

    Hung M L, Lin J S, Yan J J, Liao T L 2008 Chaos, Solitons and Fractals 35 781

    [13]

    Niu P F, Zhang J, Guan X P 2007 Acta Phys. Sin. 56 3759 (in Chinese) [牛培峰, 张君, 关新平 2007 56 3759]

    [14]

    Monje C A, Vinagre B M, Feliu V, Chen Y 2008 Control Engineering Practice 16 798

    [15]

    Li H S, Luo Y, Chen Y Q 2010 IEEE Transactions on Control Systems Technology 18 516

    [16]

    Vinopraba T, Sivakumaran N, Narayanan S, Radhakrishnan T K 2012 Journal of Control Theory and Applications 10 297

    [17]

    Gao X, Liu X W 2007 Acta Phys. Sin. 56 84 (in Chinese) [高心, 刘兴文 2007 56 84]

  • [1] 沈力华, 陈吉红, 曾志刚, 金健. 基于鲁棒极端学习机的混沌时间序列建模预测.  , 2018, 67(3): 030501. doi: 10.7498/aps.67.20171887
    [2] 罗少轩, 何博侠, 乔爱民, 王艳春. 基于参数切换算法的混沌系统吸引子近似及其电路设计.  , 2015, 64(20): 200508. doi: 10.7498/aps.64.200508
    [3] 路永坤. 受扰统一混沌系统的主动自适应模糊积分滑模控制.  , 2012, 61(22): 220504. doi: 10.7498/aps.61.220504
    [4] 刘扬正, 林长圣, 李心朝. 切换统一混沌系统族.  , 2011, 60(4): 040505. doi: 10.7498/aps.60.040505
    [5] 黄丽莲, 何少杰. 分数阶状态空间系统的稳定性分析及其在分数阶混沌控制中的应用.  , 2011, 60(4): 044703. doi: 10.7498/aps.60.044703
    [6] 郭会军, 刘丁, 赵光宙. 受扰统一混沌系统基于RBF网络的主动滑模控制.  , 2011, 60(1): 010510. doi: 10.7498/aps.60.010510
    [7] 胡建兵, 章国安, 赵灵冬, 曾金全. 间歇同步分数阶统一混沌系统.  , 2011, 60(6): 060504. doi: 10.7498/aps.60.060504
    [8] 朱少平, 钱富才, 刘丁. 不确定动态混沌系统的最优控制.  , 2010, 59(4): 2250-2255. doi: 10.7498/aps.59.2250
    [9] 刘福才, 臧秀凤, 宋佳秋. 双向耦合混沌系统的反同步性研究.  , 2009, 58(6): 3765-3771. doi: 10.7498/aps.58.3765
    [10] 张若洵, 杨洋, 杨世平. 分数阶统一混沌系统的自适应同步.  , 2009, 58(9): 6039-6044. doi: 10.7498/aps.58.6039
    [11] 李 农, 李建芬. 基于单驱动变量的混沌广义投影同步及在保密通信中的应用.  , 2008, 57(10): 6093-6098. doi: 10.7498/aps.57.6093
    [12] 黄国勇, 姜长生, 王玉惠. 鲁棒terminal滑模控制实现一类不确定混沌系统同步.  , 2007, 56(11): 6224-6229. doi: 10.7498/aps.56.6224
    [13] 单 梁, 梁 彦, 李 军, 王执铨. 统一混沌系统的状态Riccati方程同步法.  , 2007, 56(8): 4366-4371. doi: 10.7498/aps.56.4366
    [14] 马铁东, 张化光, 王智良. 一类参数不确定统一混沌系统的脉冲滞后同步.  , 2007, 56(7): 3796-3802. doi: 10.7498/aps.56.3796
    [15] 高 心, 刘兴文. 统一混沌系统的时延模糊控制.  , 2007, 56(1): 84-90. doi: 10.7498/aps.56.84
    [16] 闵富红, 王执铨. 统一混沌系统的耦合同步.  , 2005, 54(9): 4026-4030. doi: 10.7498/aps.54.4026
    [17] 王东风. 基于遗传算法的统一混沌系统比例-积分-微分控制.  , 2005, 54(4): 1495-1499. doi: 10.7498/aps.54.1495
    [18] 刘 杰, 陈士华, 陆君安. 统一混沌系统的投影同步与控制.  , 2003, 52(7): 1595-1599. doi: 10.7498/aps.52.1595
    [19] 陶朝海, 陆君安. 统一混沌系统的控制.  , 2003, 52(2): 281-284. doi: 10.7498/aps.52.281
    [20] 陶朝海, 陆君安, 吕金虎. 统一混沌系统的反馈同步.  , 2002, 51(7): 1497-1501. doi: 10.7498/aps.51.1497
计量
  • 文章访问数:  6228
  • PDF下载量:  411
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-10-15
  • 修回日期:  2014-11-26
  • 刊出日期:  2015-03-05

/

返回文章
返回
Baidu
map