-
在周期力调制噪声驱动下单模激光系统的光强方程中加入调幅波, 用线性化近似方法计算了系统的光强关联函数和输出信噪比, 并对信噪比进行数值计算和分析, 发现低频调制频率Ω、高频载波频率ω和周期力频率Ωλ对系统的输出信噪比有很大的影响. 具体表现为信噪比R 随低频调制频率Ω 的变化过程中出现了多重随机共振和极强的单峰共振, 当Ω ω 时, 系统出现的是多峰共振, 且随着Ωλ 增加, 共振峰间的距离增大, 峰值位置不变; 当Ω → ω 时, 输出信噪比R迅速增大, 而Ωλ 的影响被削弱甚至可以忽略, 多峰共振消失; 当Ω = ω 时, 系统出现了极强的单峰共振. 此外, 信噪比随周期力频率的变化呈现振幅减小的多重随机共振, 而随载流频率的变化出现单峰随机共振.Using the linear approximation method, we calculate the intensity correlation function and the output signal-tonoise ratio (SNR) by adding a modulated wave to light intensity equation of a single mode laser system driven by the periodic force of modulating noise. Through the numerical calculation and analysis of the SNR, we find that the lowfrequency modulation frequency Ω, the high-frequency carrier frequency ω, and the frequency of periodic force Ωλ have a significant effect on the SNR. In particular, multi-peak stochastic resonances and strong single-peak resonance with low-frequency modulation frequency Ω appear in the SNR. When Ω ω, the system exhibits multi-peak resonance and the distance between the resonance peaks increases with the increase of Ωλ, but the position of peak is invariant. When Ω → ω, the output SNR R increases rapidly, the effect of Ωλ becomes weak or negligible, and multi-peak resonance disappears. When Ω = ω, a strong single-peak resonance appears in the system. In addition, the SNR varies with the decrease of amplitude of the multi-peak stochastic resonance, and with the SNR changes with carrier frequency the single-peak stochastic resonance appears in the system.
-
Keywords:
- multi-peak stochastic resonance /
- single-peak stochastic resonance /
- signal to noise ratio
[1] Benzi R, Sutera A, Vulpiani A 1981 J. Phts. A: Math.Gen 14 L453
[2] Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223
[3] Gammaitoni L, Marchesoni F, Menichella-Saetta E, Santucci S 1994 Phys. Rev. E 49 4878
[4] Burada P S, Schmid G, Reguera D, Rubi J M, Hänggi P 2009 Europhys. Lett. 87 50003
[5] Jin Y F, Xu W, Xu M, Fang T 2005 J.Phys. A: Math. Gen. 38 3733
[6] Tang Y, Gao H J, Zou W, Kurths J 2013 Phys. Rev. E 87 062920
[7] He G T, Luo R Z, Luo M K 2013 Phys. Scr. 88 065009
[8] Li D S, Li J H 2010 Commun. Theor. Phys. 53 298
[9] Gao S L, Wei K, Zhong S C, Ma H 2012 Phys. Scr. 86 025002
[10] Lemarchand A, Gorecki J, Gorecki A, Nowakowski B 2014 Phys. Rev. E 89 022916
[11] Kravtsov N V, Lariontsev E G, Chekina S N 2013 Quantum Electron. 43 917
[12] Cao L, Wu D J 2007 Phys. Scr. 76 539
[13] Han L B, Cao L, Wu D J, Wang J 2004 Acta Phys. Sin. 53 2127 (in Chinese) [韩立波, 曹力, 吴大进, 王俊 2004 53 2127]
[14] Zhang L Y Cao L, Wu D J 2009 Commun. Theor. Phys. 52 143
[15] Wang B, Wu X Q, Qian J F 2010 Chin. Opt. Lett. 8 1160
[16] Zheng C M, Guo W, Du L C, Mei D C 2014 Europhys. Lett. 105 60004
[17] Chen L M, Cao L, Wu D J 2006 Chin. J. Quantum Electron. 23 167 (in Chinese) [陈黎梅, 曹力, 吴大进 2006 量子电子学报 23 167]
[18] Jin G X, Zhang L Y, Cao L 2009 Chin. Phys. B 18 952
[19] Zhang L Y, Cao L, Wu D J 2008 Cummun. Theor. Phys. 49 1310
[20] Chen D Y, Zhang L 2009 Chin. Phys. B 18 1755
[21] Chen L M, Cao L, Wu D J, Ge G Q 2005 Commum. Theor. Phys. 44 638
[22] Mcnamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854
[23] Barykin A V, Seki K 1998 Phys. Rev. E 57 6555
[24] Berdichevsky V, Gitterman M 1999 Phys. Rev. E 60 1494
[25] Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514 (in Chinese) [张晓燕, 徐伟, 周丙常 2011 60 060514]
[26] Chen D Y, Wang Z L 2008 Acta Phys. Sin. 57 3333 (in Chinese) [陈德彝, 王忠龙 2008 57 3333]
-
[1] Benzi R, Sutera A, Vulpiani A 1981 J. Phts. A: Math.Gen 14 L453
[2] Gammaitoni L, Hänggi P, Jung P, Marchesoni F 1998 Rev. Mod. Phys. 70 223
[3] Gammaitoni L, Marchesoni F, Menichella-Saetta E, Santucci S 1994 Phys. Rev. E 49 4878
[4] Burada P S, Schmid G, Reguera D, Rubi J M, Hänggi P 2009 Europhys. Lett. 87 50003
[5] Jin Y F, Xu W, Xu M, Fang T 2005 J.Phys. A: Math. Gen. 38 3733
[6] Tang Y, Gao H J, Zou W, Kurths J 2013 Phys. Rev. E 87 062920
[7] He G T, Luo R Z, Luo M K 2013 Phys. Scr. 88 065009
[8] Li D S, Li J H 2010 Commun. Theor. Phys. 53 298
[9] Gao S L, Wei K, Zhong S C, Ma H 2012 Phys. Scr. 86 025002
[10] Lemarchand A, Gorecki J, Gorecki A, Nowakowski B 2014 Phys. Rev. E 89 022916
[11] Kravtsov N V, Lariontsev E G, Chekina S N 2013 Quantum Electron. 43 917
[12] Cao L, Wu D J 2007 Phys. Scr. 76 539
[13] Han L B, Cao L, Wu D J, Wang J 2004 Acta Phys. Sin. 53 2127 (in Chinese) [韩立波, 曹力, 吴大进, 王俊 2004 53 2127]
[14] Zhang L Y Cao L, Wu D J 2009 Commun. Theor. Phys. 52 143
[15] Wang B, Wu X Q, Qian J F 2010 Chin. Opt. Lett. 8 1160
[16] Zheng C M, Guo W, Du L C, Mei D C 2014 Europhys. Lett. 105 60004
[17] Chen L M, Cao L, Wu D J 2006 Chin. J. Quantum Electron. 23 167 (in Chinese) [陈黎梅, 曹力, 吴大进 2006 量子电子学报 23 167]
[18] Jin G X, Zhang L Y, Cao L 2009 Chin. Phys. B 18 952
[19] Zhang L Y, Cao L, Wu D J 2008 Cummun. Theor. Phys. 49 1310
[20] Chen D Y, Zhang L 2009 Chin. Phys. B 18 1755
[21] Chen L M, Cao L, Wu D J, Ge G Q 2005 Commum. Theor. Phys. 44 638
[22] Mcnamara B, Wiesenfeld K 1989 Phys. Rev. A 39 4854
[23] Barykin A V, Seki K 1998 Phys. Rev. E 57 6555
[24] Berdichevsky V, Gitterman M 1999 Phys. Rev. E 60 1494
[25] Zhang X Y, Xu W, Zhou B C 2011 Acta Phys. Sin. 60 060514 (in Chinese) [张晓燕, 徐伟, 周丙常 2011 60 060514]
[26] Chen D Y, Wang Z L 2008 Acta Phys. Sin. 57 3333 (in Chinese) [陈德彝, 王忠龙 2008 57 3333]
计量
- 文章访问数: 6078
- PDF下载量: 267
- 被引次数: 0