搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二元玻色-爱因斯坦凝聚体中矢量孤子的转化行为

张蔚曦 张志强 冉茂武 欧永康 何章明

引用本文:
Citation:

二元玻色-爱因斯坦凝聚体中矢量孤子的转化行为

张蔚曦, 张志强, 冉茂武, 欧永康, 何章明

Transformation of vector solitons in twospecies Bose-Einstein condensates

Zhang Wei-Xi, Zhang Zhi-Qiang, Ran Mao-Wu, Ou Yong-Kang, He Zhang-Ming
PDF
导出引用
  • 考虑种内和种间相互作用均为排斥作用,研究了局限于谐振 外部势阱中的二元玻色-爱因斯坦凝聚体中灰-灰和黑-黑孤子的动力学行为. 结果表明:当谐振势阱的轴向囚禁频率为零时,灰-灰和黑-黑孤子均能保持局域稳定;而当轴向囚禁频率不为零时,凝聚体中的原子向势阱中心聚集,发现灰-灰孤子可以转化成亮-亮孤子.
    Considering the interspecies and intraspecies interactions as being repulsive, we study the dynamic behaviors of the gray-gray and black-black solitons in two-species Bose-Einstein condensates trapped in the harmonic external potentials. The results show that in the absence of the axial trapping frequencies, both the gray-gray and black-black solitons can keep localization stable. In the presence of the axial trapping frequencies, the gray-gray can be converted into bright-bright solitons.
    • 基金项目: 国家自然科学基金地区科学基金(批准号:61367003)、贵州省科技厅科学技术基金(批准号:J20122314)和河南省教育厅科学技术研究重点项目(批准号:14B140014)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 61367003), the Science and Technology Foundation of Guizhou Province, China (Grant No. J20122314), and the Research Foundation of Education Bureau of Henan Province, China (Grant No. 14B140014).
    [1]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K 1999 Phys. Rev. Lett. 83 5198

    [2]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150

    [3]

    Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E 1999 Phys. Rev. Lett. 83 2498

    [4]

    Zhang X F, Hu X H, Liu X X, Liu W M 2009 Phys. Rev. A 79 033630

    [5]

    Liu X X, Pu H, Xiong B, Liu W M, Gong J B 2009 Phys. Rev. A 79 013423

    [6]

    Pu H, Bigelow N P 1998 Phys. Rev. Lett. 80 1134

    [7]

    Huang G X, Li X Q, Szeftel J 2004 Phys. Rev. A 69 065601

    [8]

    Wang D S, Hu X H, Liu W M 2010 Phys. Rev. A 82 023612

    [9]

    Yu H Y, Pan L X, Yan J R, Tang J Q 2009 J. Phys. B: At. Mol. Opt. Phys. 42 025301

    [10]

    Luo M, Bao C G, Li Z B 2008 J. Phys. B: At. Mol. Opt. Phys. 41 245301

    [11]

    Liu X X, Zhang X F, Zhang P 2010 Chin. Phys. Lett. 27 070306

    [12]

    Yan J R, Pan L X, Yu H Y, Ao S M 2009 Chin. Phys. Lett. 26 090301

    [13]

    Li L, Malomed B A, Mihalache D, Liu W M 2006 Phys. Rev. E 73 066610

    [14]

    Cheng Y S 2009 J. Phys. B: At. Mol. Opt. Phys. 42 205005

    [15]

    Xiong B, Gong J B 2010 Phys. Rev. A 81 033618

    [16]

    Xuan H N, Zuo M 2011 Commun. Theor. Phys. 56 1035

    [17]

    Morsch O, Oberthaler M 2006 Rev. Mod. Phys. 78 179

    [18]

    Shrestha U, Javanainen J, Ruostekosk J 2009 Phys. Rev. Lett. 103 190401

    [19]

    Hamner C, Chang J J, Engels P, Hoefer M A 2011 Phys. Rev. Lett. 106 065302

    [20]

    He Z M, Wang D L, Ding J W, Yan X H 2012 Acta Phys. Sin. 61 230508 (in Chinese) [何章明, 王登龙, 丁建文, 颜晓红 2012 61 230508]

    [21]

    Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72 033611

    [22]

    Zhao L C, He S L 2011 Phys. Lett. A 375 3017

    [23]

    Wen L, Liu W M, Cai Y, Zhang J M, Hu J 2012 Phys. Rev. A 85 043602

    [24]

    He Z M, Wang D L, Ding J W, Yan X H 2012 Eur. Phys. J. D 66 139

    [25]

    Chen Z, Wu B 2010 Phys. Rev. A 81 043611

    [26]

    Wu L, Li L, Zhang J F 2009 Phys. Rev. A 80 013617

    [27]

    Xue J K, Peng P 2006 Chin. Phys. B 15 1149

    [28]

    Zhang C W, Liu J, Raizen M G, Niu Q 2004 Phys. Rev. Lett. 92 054101

    [29]

    Huang G X, Velarde M G, Makarov V A 2001 Phys. Rev. A 64 013617

    [30]

    Huang G X 2004 Chin. Phys. B 13 1866

    [31]

    Wang S J, Jia C L, Zhao D, Luo H G, An J H 2003 Phys. Rev. A 68 015601

    [32]

    Zhang X F, Yang Q, Zhang J F, Chen X Z, Liu W M 2008 Phys. Rev. A 77 023613

    [33]

    Wu B, Liu J, Niu Q 2002 Phys. Rev. Lett. 88 034101

    [34]

    Li Z D, Li QY, Li L, Liu W M 2007 Phys. Rev. E 76 026605

    [35]

    Li Z D, Li Q Y, He P B, Bai Z G, Sun Y B 2007 Ann. Phys. 322 2945

    [36]

    He Z M, Wang D L, Zhang W X, Wang F J, Ding J W 2008 Chin. Phys. Lett. 25 3158

    [37]

    Papp S B, Pino J M, Wieman C E 2008 Phys. Rev. Lett. 101 040402

    [38]

    Ronen S, Bohn J L, Halmo L E, Edwards M 2008 Phys. Rev. A 78 053613

    [39]

    Miesner H J, Stamper-Kurn D M, Andrews M R, Durfee D S, Inouye S, Ketterle W 1998 Science 279 1005

  • [1]

    Burger S, Bongs K, Dettmer S, Ertmer W, Sengstock K 1999 Phys. Rev. Lett. 83 5198

    [2]

    Strecker K E, Partridge G B, Truscott A G, Hulet R G 2002 Nature 417 150

    [3]

    Matthews M R, Anderson B P, Haljan P C, Hall D S, Wieman C E 1999 Phys. Rev. Lett. 83 2498

    [4]

    Zhang X F, Hu X H, Liu X X, Liu W M 2009 Phys. Rev. A 79 033630

    [5]

    Liu X X, Pu H, Xiong B, Liu W M, Gong J B 2009 Phys. Rev. A 79 013423

    [6]

    Pu H, Bigelow N P 1998 Phys. Rev. Lett. 80 1134

    [7]

    Huang G X, Li X Q, Szeftel J 2004 Phys. Rev. A 69 065601

    [8]

    Wang D S, Hu X H, Liu W M 2010 Phys. Rev. A 82 023612

    [9]

    Yu H Y, Pan L X, Yan J R, Tang J Q 2009 J. Phys. B: At. Mol. Opt. Phys. 42 025301

    [10]

    Luo M, Bao C G, Li Z B 2008 J. Phys. B: At. Mol. Opt. Phys. 41 245301

    [11]

    Liu X X, Zhang X F, Zhang P 2010 Chin. Phys. Lett. 27 070306

    [12]

    Yan J R, Pan L X, Yu H Y, Ao S M 2009 Chin. Phys. Lett. 26 090301

    [13]

    Li L, Malomed B A, Mihalache D, Liu W M 2006 Phys. Rev. E 73 066610

    [14]

    Cheng Y S 2009 J. Phys. B: At. Mol. Opt. Phys. 42 205005

    [15]

    Xiong B, Gong J B 2010 Phys. Rev. A 81 033618

    [16]

    Xuan H N, Zuo M 2011 Commun. Theor. Phys. 56 1035

    [17]

    Morsch O, Oberthaler M 2006 Rev. Mod. Phys. 78 179

    [18]

    Shrestha U, Javanainen J, Ruostekosk J 2009 Phys. Rev. Lett. 103 190401

    [19]

    Hamner C, Chang J J, Engels P, Hoefer M A 2011 Phys. Rev. Lett. 106 065302

    [20]

    He Z M, Wang D L, Ding J W, Yan X H 2012 Acta Phys. Sin. 61 230508 (in Chinese) [何章明, 王登龙, 丁建文, 颜晓红 2012 61 230508]

    [21]

    Li L, Li Z D, Malomed B A, Mihalache D, Liu W M 2005 Phys. Rev. A 72 033611

    [22]

    Zhao L C, He S L 2011 Phys. Lett. A 375 3017

    [23]

    Wen L, Liu W M, Cai Y, Zhang J M, Hu J 2012 Phys. Rev. A 85 043602

    [24]

    He Z M, Wang D L, Ding J W, Yan X H 2012 Eur. Phys. J. D 66 139

    [25]

    Chen Z, Wu B 2010 Phys. Rev. A 81 043611

    [26]

    Wu L, Li L, Zhang J F 2009 Phys. Rev. A 80 013617

    [27]

    Xue J K, Peng P 2006 Chin. Phys. B 15 1149

    [28]

    Zhang C W, Liu J, Raizen M G, Niu Q 2004 Phys. Rev. Lett. 92 054101

    [29]

    Huang G X, Velarde M G, Makarov V A 2001 Phys. Rev. A 64 013617

    [30]

    Huang G X 2004 Chin. Phys. B 13 1866

    [31]

    Wang S J, Jia C L, Zhao D, Luo H G, An J H 2003 Phys. Rev. A 68 015601

    [32]

    Zhang X F, Yang Q, Zhang J F, Chen X Z, Liu W M 2008 Phys. Rev. A 77 023613

    [33]

    Wu B, Liu J, Niu Q 2002 Phys. Rev. Lett. 88 034101

    [34]

    Li Z D, Li QY, Li L, Liu W M 2007 Phys. Rev. E 76 026605

    [35]

    Li Z D, Li Q Y, He P B, Bai Z G, Sun Y B 2007 Ann. Phys. 322 2945

    [36]

    He Z M, Wang D L, Zhang W X, Wang F J, Ding J W 2008 Chin. Phys. Lett. 25 3158

    [37]

    Papp S B, Pino J M, Wieman C E 2008 Phys. Rev. Lett. 101 040402

    [38]

    Ronen S, Bohn J L, Halmo L E, Edwards M 2008 Phys. Rev. A 78 053613

    [39]

    Miesner H J, Stamper-Kurn D M, Andrews M R, Durfee D S, Inouye S, Ketterle W 1998 Science 279 1005

  • [1] 应耀俊, 李海彬. 不对称双势阱中玻色-爱因斯坦凝聚体的动力学.  , 2023, 72(13): 130303. doi: 10.7498/aps.72.20230419
    [2] 李新月, 祁娟娟, 赵敦, 刘伍明. 自旋-轨道耦合二分量玻色-爱因斯坦凝聚系统的孤子解.  , 2023, 72(10): 106701. doi: 10.7498/aps.72.20222319
    [3] 张志强. 简谐与光晶格复合势阱中旋转二维玻色-爱因斯坦凝聚体中的涡旋链.  , 2022, 71(22): 220304. doi: 10.7498/aps.71.20221312
    [4] 贾瑞煜, 方乒乒, 高超, 林机. 玻色-爱因斯坦凝聚体中的淬火孤子与冲击波.  , 2021, 70(18): 180303. doi: 10.7498/aps.70.20210564
    [5] 郭慧, 王雅君, 王林雪, 张晓斐. 玻色-爱因斯坦凝聚中的环状暗孤子动力学.  , 2020, 69(1): 010302. doi: 10.7498/aps.69.20191424
    [6] 李吉, 刘斌, 白晶, 王寰宇, 何天琛. 环形势阱中自旋-轨道耦合旋转玻色-爱因斯坦凝聚体的基态.  , 2020, 69(14): 140301. doi: 10.7498/aps.69.20200372
    [7] 何章明, 张志强. 玻色-爱因斯坦凝聚体中的双孤子相互作用操控.  , 2016, 65(11): 110502. doi: 10.7498/aps.65.110502
    [8] 袁都奇. 三维简谐势阱中玻色-爱因斯坦凝聚的边界效应.  , 2014, 63(17): 170501. doi: 10.7498/aps.63.170501
    [9] 何章明, 张志强, 朱善华, 柳闻鹃. 光晶格势阱中二元凝聚体的矢量孤子的振荡和分裂.  , 2014, 63(19): 190502. doi: 10.7498/aps.63.190502
    [10] 谢元栋. 光格中旋量玻色-爱因斯坦凝聚的高阶非线性孤子激发.  , 2012, 61(21): 210305. doi: 10.7498/aps.61.210305
    [11] 何章明, 王登龙, 丁建文, 颜晓红. 二元凝聚体中亮-亮孤子的振荡-局域转变行为.  , 2012, 61(23): 230508. doi: 10.7498/aps.61.230508
    [12] 黄芳, 李海彬. 双势阱中玻色-爱因斯坦凝聚的绝热隧穿.  , 2011, 60(2): 020303. doi: 10.7498/aps.60.020303
    [13] 宗丰德, 杨阳, 张解放. 外势场作用下的玻色-爱因斯坦凝聚啁啾孤子的演化与操控.  , 2009, 58(6): 3670-3678. doi: 10.7498/aps.58.3670
    [14] 王海雷, 杨世平. 三势阱中玻色-爱因斯坦凝聚的开关特性.  , 2008, 57(8): 4700-4705. doi: 10.7498/aps.57.4700
    [15] 刘泽专, 杨志安. 噪声对双势阱玻色-爱因斯坦凝聚体系自俘获现象的影响.  , 2007, 56(3): 1245-1252. doi: 10.7498/aps.56.1245
    [16] 马 云, 傅立斌, 杨志安, 刘 杰. 玻色-爱因斯坦凝聚体自囚禁现象的动力学相变及其量子纠缠特性.  , 2006, 55(11): 5623-5628. doi: 10.7498/aps.55.5623
    [17] 王冠芳, 傅立斌, 赵 鸿, 刘 杰. 双势阱玻色-爱因斯坦凝聚体系的自俘获现象及其周期调制效应.  , 2005, 54(11): 5003-5013. doi: 10.7498/aps.54.5003
    [18] 王翀, 闫珂柱. 简谐势阱中非理想气体玻色-爱因斯坦凝聚转变温度的数值研究.  , 2004, 53(5): 1284-1288. doi: 10.7498/aps.53.1284
    [19] 印建平, 高伟建, 刘南春, 王义遒. 全光学冷却与囚禁133Cs原子玻色-爱因斯坦凝聚的可能性.  , 2001, 50(4): 660-666. doi: 10.7498/aps.50.660
    [20] 王德重, 陆兴华, 黄 湖, 李师群. 旋转对称W型势阱中玻色-爱因斯坦凝聚环.  , 1999, 48(7): 1192-1197. doi: 10.7498/aps.48.1192
计量
  • 文章访问数:  5840
  • PDF下载量:  455
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-04-02
  • 修回日期:  2014-06-07
  • 刊出日期:  2014-10-05

/

返回文章
返回
Baidu
map