-
以自组装聚苯乙烯小球(PS)单层膜为掩膜,利用Au对Si表面的催化氧化作用以及KOH溶液对单晶Si的各向异性腐蚀特性,在Si(100)面上制备了一系列尺寸小于100 nm有序可控的Si纳米孔阵列. 扫描电镜(SEM)和原子力显微镜(AFM)等的测试结果显示:当PS小球溶液与甲醇溶液的体积比为9:11时,可形成大面积无缺陷的单层膜;但当体积比过大时,会导致类似双层膜结构的形成;而当体积比过小时,会诱导形成点缺陷和线缺陷. 对PS小球及溅射Au处理过的Si晶片进行KOH溶液腐蚀,随着腐蚀时间变长,纳米孔的横向尺寸和深度增大,其形貌由圆形逐渐变为倒金字塔型,当腐蚀时间超过10 min,纳米孔阵列的有序性遭到破坏. 采用离子束溅射技术在倒金字塔型纳米孔衬底上获得了有序Ge/Si纳米岛,而在圆形纳米孔衬底上获得了有序Ge/Si纳米环. 进一步对有序Ge/Si纳米岛及纳米环的形成机理进行了解释.Size-controlled Si nanopore array with a pore size less than 100 nm is fabricated on Si (100) substrates by using monolayer self-assembled and KOH anisotropic wet etching technique. Morphology and structure of the pores are characterized by SEM and AFM. Results show that a large area of defect-free polystyrene (PS) monolayer film can be obtained when the volume ratio of PS solution to methanol solution is 9:11. A larger volume ratio or a smaller volume ratio will induce similar bilayer structure and defects (point and line) in the PS film, respectively. The lateral size and depth of the nanopore will increase with the etching time, and its morphology will change from circular to inverted pyramid type gradually. But the orderly arranged structure will be destroyed as the etching time is over 10 min. On the other hand, ordered Ge/Si nanoislands and nanorings will be grown on nanopore-patterned Si (100) substrates (inverted pyramid and circular nanopores, respectively) by ion beam sputtering. In addition, reasonable interpretations have been proposed for the formation mechanism of the ordered Ge/Si nanostructure.
-
Keywords:
- Au-induced /
- polystyrene spheres /
- Si nanopore /
- Ge/Si nano-array
[1] Chou S Y, Wei M S, Krauss P R, Fischer P B 1994 J. Appl. Phys. 76 6673
[2] Shwn Y Z, Christopher S F, Jiang Y, Jakubczyk D, Swiatkiewicz J, Prasad P N 2000 J. Phys. Chem. B 104 7577
[3] Wang H Y, Xu X S 2013 Chin. Phys. B 22 054205
[4] Yang S k, Xu F, Ostendorp S, Wilde G, Zhao H P, Lei Y 2011 Adv. Funct. Mater. 21 2446
[5] Chen Z X, Ren Y, Xiao G H, Li J T, Chen X, Wang X H, Jin C J, Zhang B J 2014 Chin. Phys. B 23 018502
[6] Sun P, Xu L, Zhao W M, Li W, Xu J, Ma Z Y, Wu L C, Huang X F, Chen K J 2008 Acta Phys. Sin. 57 1951 (in Chinese)[孙萍, 徐岭, 赵伟明, 李卫, 徐骏, 马忠元, 吴良才, 黄信凡, 陈坤基 2008 57 1951]
[7] Chen L M, Li P G, Fu X L, Zhang H Y, Li H L, Tang W H 2005 Acta Phys. Sin. 54 0582 (in Chinese) [陈雷明, 李培刚, 符秀丽, 张海英, L. H. Li, 唐为华 2005 54 0582]
[8] Awad Y, Lavallee E, Lau K M, Beauvais J, Drouin D, Cloutier M, Turcotte D, Yang P, Kelkar P 2004 J. Vac. Sci. Technol. A 22 1040
[9] Hamouda F, Barbillon G, Held S, Agnus G, Gogol P, Maroutian T, Scheuring S, Bartenlian B 2009 Microelectron. Eng. 86 583
[10] Brambley D, Martin B,, Prewett P D 1994 Adv. Mater. Opt. Elec-tron. 4 55
[11] Lan H B, Ding Y C 2012 Nano Today. 7 94
[12] Martin O J F 2003 Microelectron. Eng. 24 67
[13] Yang M F, Yu H Y, Sun X W, Li J S, Li X C, Ke L, Hu J H, Wang F, Jiao Z H 2011 Solid State Communications 151 127
[14] Xiang Y J, Liu D F, Zhang Z X, Song L, Zhao X W, Liu L F, Luo S D, Ma W J Shen J, Zhou W Y, Zhou J J, Wang C Y, Wang G, Wu X C 2006 Chin. Phys. B 15 2080
[15] Cheng S L, Lin Y H, Lee S W, Lee T, Chen H, Hu J C, Chen L T 2012 Appl. Surf. Sci. 263 430
[16] Chen X, Liang Z H, Chen Z X, Yang W M, Chen T F, Jin C J, Zhang B J 2013 Chin. Phys. B 22 048101
[17] Park K H, Lee S, Koh H K, Lacerda R, Teo K B K, Milne W I 2005 J. Appl. Phys. 97 024311
[18] Sakamoto S, Philippe L, Bechelany M, Michler J, Asoh H, Ono S 2008 Nanotechnology 19 405304
[19] Cheung C L, Nikolic R J, Reinhardt C E, Wang T F 2006 Nanotechnology 17 1339
[20] Ma Y J, Cui J, Fan Y L, Zhong Z Y, Jiang Z M 2011 Nanoscale Research Letters 6 205
[21] Fuhrmann B, Leipner H S, Hoche H R, Schubert L, Werner P, Gosele U 2005 Nano Letters 5 2524
[22] Ma Y J, Zhong Z Y, Yang X J, Fan Y L, Jiang Z M 2013 Nanotechnology 24 015304
[23] Weekes S M, Ogrin F Y, Murray W A, Keatley P S 2007 Langmuir. 23 1057
[24] Eidelloth W, Sandstorm R L 1991 Appl. Phys. Lett. 59 1632
[25] Lu Z C, Zhou M 2011 Journal of Colloid and Interface Science 361 429
[26] Stavroulakis P I, Christou N, Bagnall D 2009 Mater. Sci. Eng. B 165 186
[27] Lindroos V, Tilli M, Lehto A, Motooka T 2010 Handbook of silicon based MEMS materials and technologies (Burlington: William Andrew) pp375-407
[28] Yun M 2000 Journal-Korean Physical Society. 37 605
[29] Shikida M, Sato K, Tokoro K, Uchikawa D 2000 Sens. Actuator A 80 179
[30] Seidel H, Csepregi L, Heuberger A, Baumgartel H 1990 J. Electrochem. Soc. 137 3612
[31] Hollinger G, Himpsel F J 1984 Appl. Phys. Lett. 44 93
[32] Sundaravel B, Sekar K, Kuri G, Satyam P V, Dev B N, Bera Santanu, Narasimhan S V, Chakraborty P, Caccavale F 1999 Appl. Surf. Sci. 137 103
[33] Lu Z H, Sham T K, Norton P R 1993 Solid State Commun. 85 957
[34] Hiraki A, Nicolet M A, Mayer J W 1971 Appl. Phys. Lett. 18 178
[35] Cros A, Derrien J, Salvan F 1981 Surf. Sci. 110 471
[36] Robinson J T, Ratto F, Moutanabbir O, Heun S, Locatelli A, Mentes T O, Aballe L, Dubon O D 2007 Nano Lett. 7 2655
[37] Tu K N, Mayer J W, Feldman L C(translated by Huang X F, Du J F, Chen K J)1997 Electronic Thin Film Sciences (Beijing: Science Press) pp113–114 (in Chinese) [杜经宁, 迈耶J W, 费尔德曼L C著 (黄信凡, 杜家方, 陈坤基译) 1997 电子薄膜科学 (北京: 科学出版社) 第113第–114页]
[38] Zhang Y J, Wang X H, Wang Y X, Liu H L, Yang J H 2008 Journal of Alloys and Compounds 452 473
[39] Schulli T U, Vastola G, Richard M I, Malachias A, Renaud G, Uhlık F, Montalenti F, Chen G, Miglio L, Schaffler F, Bauer G 2009 Phys. Rev. Lett. 102 025502
[40] Katsaros G, Tersoff J, Stoffel M, Rastelli A, Acosta-Diaz P, Kar G S, Costantini G, Schmidt O G, Kern K 2008 Phys. Rev. Lett. 101 096103
[41] Gruetzmacher D, Fromherz T, Dais C, Stangl J, Mueller E, Ekinci Y, Solak H H, Sigg H, Lechner T R, Wintersberger E, Bimer S, Holy V, Bauer G 2007 Nano Lett. 7 3150
[42] Zhong Z Y, Chen P X, Jiang Z M, Bauer G 2008 Appl. Phys. Lett. 93 043106
-
[1] Chou S Y, Wei M S, Krauss P R, Fischer P B 1994 J. Appl. Phys. 76 6673
[2] Shwn Y Z, Christopher S F, Jiang Y, Jakubczyk D, Swiatkiewicz J, Prasad P N 2000 J. Phys. Chem. B 104 7577
[3] Wang H Y, Xu X S 2013 Chin. Phys. B 22 054205
[4] Yang S k, Xu F, Ostendorp S, Wilde G, Zhao H P, Lei Y 2011 Adv. Funct. Mater. 21 2446
[5] Chen Z X, Ren Y, Xiao G H, Li J T, Chen X, Wang X H, Jin C J, Zhang B J 2014 Chin. Phys. B 23 018502
[6] Sun P, Xu L, Zhao W M, Li W, Xu J, Ma Z Y, Wu L C, Huang X F, Chen K J 2008 Acta Phys. Sin. 57 1951 (in Chinese)[孙萍, 徐岭, 赵伟明, 李卫, 徐骏, 马忠元, 吴良才, 黄信凡, 陈坤基 2008 57 1951]
[7] Chen L M, Li P G, Fu X L, Zhang H Y, Li H L, Tang W H 2005 Acta Phys. Sin. 54 0582 (in Chinese) [陈雷明, 李培刚, 符秀丽, 张海英, L. H. Li, 唐为华 2005 54 0582]
[8] Awad Y, Lavallee E, Lau K M, Beauvais J, Drouin D, Cloutier M, Turcotte D, Yang P, Kelkar P 2004 J. Vac. Sci. Technol. A 22 1040
[9] Hamouda F, Barbillon G, Held S, Agnus G, Gogol P, Maroutian T, Scheuring S, Bartenlian B 2009 Microelectron. Eng. 86 583
[10] Brambley D, Martin B,, Prewett P D 1994 Adv. Mater. Opt. Elec-tron. 4 55
[11] Lan H B, Ding Y C 2012 Nano Today. 7 94
[12] Martin O J F 2003 Microelectron. Eng. 24 67
[13] Yang M F, Yu H Y, Sun X W, Li J S, Li X C, Ke L, Hu J H, Wang F, Jiao Z H 2011 Solid State Communications 151 127
[14] Xiang Y J, Liu D F, Zhang Z X, Song L, Zhao X W, Liu L F, Luo S D, Ma W J Shen J, Zhou W Y, Zhou J J, Wang C Y, Wang G, Wu X C 2006 Chin. Phys. B 15 2080
[15] Cheng S L, Lin Y H, Lee S W, Lee T, Chen H, Hu J C, Chen L T 2012 Appl. Surf. Sci. 263 430
[16] Chen X, Liang Z H, Chen Z X, Yang W M, Chen T F, Jin C J, Zhang B J 2013 Chin. Phys. B 22 048101
[17] Park K H, Lee S, Koh H K, Lacerda R, Teo K B K, Milne W I 2005 J. Appl. Phys. 97 024311
[18] Sakamoto S, Philippe L, Bechelany M, Michler J, Asoh H, Ono S 2008 Nanotechnology 19 405304
[19] Cheung C L, Nikolic R J, Reinhardt C E, Wang T F 2006 Nanotechnology 17 1339
[20] Ma Y J, Cui J, Fan Y L, Zhong Z Y, Jiang Z M 2011 Nanoscale Research Letters 6 205
[21] Fuhrmann B, Leipner H S, Hoche H R, Schubert L, Werner P, Gosele U 2005 Nano Letters 5 2524
[22] Ma Y J, Zhong Z Y, Yang X J, Fan Y L, Jiang Z M 2013 Nanotechnology 24 015304
[23] Weekes S M, Ogrin F Y, Murray W A, Keatley P S 2007 Langmuir. 23 1057
[24] Eidelloth W, Sandstorm R L 1991 Appl. Phys. Lett. 59 1632
[25] Lu Z C, Zhou M 2011 Journal of Colloid and Interface Science 361 429
[26] Stavroulakis P I, Christou N, Bagnall D 2009 Mater. Sci. Eng. B 165 186
[27] Lindroos V, Tilli M, Lehto A, Motooka T 2010 Handbook of silicon based MEMS materials and technologies (Burlington: William Andrew) pp375-407
[28] Yun M 2000 Journal-Korean Physical Society. 37 605
[29] Shikida M, Sato K, Tokoro K, Uchikawa D 2000 Sens. Actuator A 80 179
[30] Seidel H, Csepregi L, Heuberger A, Baumgartel H 1990 J. Electrochem. Soc. 137 3612
[31] Hollinger G, Himpsel F J 1984 Appl. Phys. Lett. 44 93
[32] Sundaravel B, Sekar K, Kuri G, Satyam P V, Dev B N, Bera Santanu, Narasimhan S V, Chakraborty P, Caccavale F 1999 Appl. Surf. Sci. 137 103
[33] Lu Z H, Sham T K, Norton P R 1993 Solid State Commun. 85 957
[34] Hiraki A, Nicolet M A, Mayer J W 1971 Appl. Phys. Lett. 18 178
[35] Cros A, Derrien J, Salvan F 1981 Surf. Sci. 110 471
[36] Robinson J T, Ratto F, Moutanabbir O, Heun S, Locatelli A, Mentes T O, Aballe L, Dubon O D 2007 Nano Lett. 7 2655
[37] Tu K N, Mayer J W, Feldman L C(translated by Huang X F, Du J F, Chen K J)1997 Electronic Thin Film Sciences (Beijing: Science Press) pp113–114 (in Chinese) [杜经宁, 迈耶J W, 费尔德曼L C著 (黄信凡, 杜家方, 陈坤基译) 1997 电子薄膜科学 (北京: 科学出版社) 第113第–114页]
[38] Zhang Y J, Wang X H, Wang Y X, Liu H L, Yang J H 2008 Journal of Alloys and Compounds 452 473
[39] Schulli T U, Vastola G, Richard M I, Malachias A, Renaud G, Uhlık F, Montalenti F, Chen G, Miglio L, Schaffler F, Bauer G 2009 Phys. Rev. Lett. 102 025502
[40] Katsaros G, Tersoff J, Stoffel M, Rastelli A, Acosta-Diaz P, Kar G S, Costantini G, Schmidt O G, Kern K 2008 Phys. Rev. Lett. 101 096103
[41] Gruetzmacher D, Fromherz T, Dais C, Stangl J, Mueller E, Ekinci Y, Solak H H, Sigg H, Lechner T R, Wintersberger E, Bimer S, Holy V, Bauer G 2007 Nano Lett. 7 3150
[42] Zhong Z Y, Chen P X, Jiang Z M, Bauer G 2008 Appl. Phys. Lett. 93 043106
计量
- 文章访问数: 6879
- PDF下载量: 887
- 被引次数: 0