搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

共轭聚合物中掺杂可溶性石墨烯对于OLED和OPV性能的影响

何家琪 何大伟 王永生 刘智勇

引用本文:
Citation:

共轭聚合物中掺杂可溶性石墨烯对于OLED和OPV性能的影响

何家琪, 何大伟, 王永生, 刘智勇

SPFGO effects on the electroluminescence and photovoltaic response in conjugated polymers

He Jia-Qi, He Da-Wei, Wang Yong-Sheng, Liu Zhi-Yong
PDF
导出引用
  • 本文重点研究了不同浓度可溶性石墨烯(SPFGO)对于聚[2-甲氧基-5-(2-乙基己氧基)]对苯乙炔(MEH-PPV)/SPFGO复合薄膜的光致发光(PL)、 有机电致发光(OLED)和有机光伏(OPV)性能的影响. 研究发现, 在MEH-PPV中掺杂SPFGO之后, MEH-PPV/SPFGO复合薄膜的光致发光发生了非常强烈的猝灭, 意味着MEH-PPV和SPFGO之间发生了非常强烈的载流子传输. 当SPFGO的浓度较低的时候, 能够提高OLED的性能, 当SPFGO的浓度为0.2%时, OLED的性能达到最佳, 而此时的OPV性能基本没有改变. 当掺杂较高浓度的SPFGO 之后, OPV的性能有了明显的提升, 当浓度为15%时, OPV达到了最佳的性能, 而此时的OLED发生了非常强烈的猝灭. 通过实验数据可以看出, 当SPFGO较低浓度的时候, 起到增强载流子注入的作用, 提升OLED亮度的同时降低了开路电压. 而当SPFGO达到较高浓度时, SPFGO作为电子受体, 可以起到改善MEH-PPV/SPFGO 界面激子分裂和提高OPV性能的作用. 因此, 通过调节SPFGO浓度可以起到独立调控OLED性能和OPV性能的作用.
    This paper studies the influence of poly [2-methoxy-5-(2-ethylhexyloxy)-1, 4-phenylenevinylene] (MEH-PPV) on solution-processable functionalized graphene oxide (SPFGO) composite film-based organic light emitting Diode (OLED) and organic photovoltaic (OPV) performance for different SPFGO concentrations. There is a strong quenching of photoluminescence when MEH-PPV is doped with SPFGO, which means there is a strong transfer of electron and energy between MEH-PPV and SPFGO. Doping SPFGO in MEH-PPV can improve the performance of OLED at low concentration, and the performance will be the best when the concentration of SPFGO is 0.2%; however, the performance of OPV remains unchanged. The performance of OPV could be improved by high doping concentration of SPFGO, the performance will be the best when the concentration of SPFGO reaches 15%, and there is a quenching in the electroluminescence (EL) of OLED. As shown in the statistics of the experiment, SPFGO can increase the injectivity of carriers, and when the SPFGO is of low concentration, it can increase the luminous intensity of OLED and reduce the threshold voltage. SPFGO can act as an electron acceptor, and when the concentration of SPFGO is high, the exciton dissociation at MEH-PPV/SPFGO interface can be improved, and the performance of OPV can be also improved. Therefore, the concentration of SPFGO should be the main factor in adjusting the performance of OLED and OPV separately.
    • 基金项目: 国家重点基础研究发展计划(973计划)(批准号: 2011CB932700,2011CB932703);国家杰出青年科学基金(批准号: 60825407);国家自然科学基金(批准号: 61077044);北京市自然科学基金(批准号: 4132031)和国家自然科学基金(批准号: 61378073, 61335006)资助的课题.
    • Funds: Project supported by the National Basic Research Program of China (Grant Nos. 2011CB932700, 2011CB932703), the National Science Fund for Distinguished Young Scholars of China (Grant No. 60825407), the National Natural Science Foundation of China (Grant No. 61077044), and the Natural Science Foundation of Beijing, China (Grant No. 4132031), and the National Natural Science Foundation of China (Grant Nos. 61378073, 61335006).
    [1]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C 1999 Nature 397 121

    [2]

    Yu H Z, Peng J B, Zhao X M 2008 Acta Phys. Sin. 57 3898 (in Chinese) [於黄忠, 彭俊彪, 周晓明 2008 57 3898]

    [3]

    Madhava Rao M V, Su Y K, Huang T S, Chen Y C 2010 Nano-Micro Lett. 2 242

    [4]

    Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T 1996 Nature (London) 382 54

    [5]

    Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S 2008 Adv. Mater. 20 3924

    [6]

    Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C, Holmes A B 1995 Nature (London) 376 498

    [7]

    Bolotina K I, Sikesb K J, Jianga Z, Klimac M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [8]

    Yang Z, Gao R G, Hu N T, Chai J, Cheng Y W, Zhang L Y, Wei H, Eric Siu-Wai Kong, Zhang Y F 2012 Nano. Micro Lett. 4 1

    [9]

    Hong Z R, Huang Z H, Zeng X T 2006 Chem. Phys. Lett. 425 62

    [10]

    Wang X, Zhi L, Mullen K 2008 Nano Lett. 8 323

    [11]

    Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    [12]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [13]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282

    [14]

    Dini D, Barthel M, Schneider T, Ottmar M, Verma S, Hanack M 2003 Solid State Ionics. 165 289

    [15]

    Kyu W L, Lee S P, Choi H, Kyu H M, Jae W J, Kweon H, Cheol E J 2007 Appl. Phys. Lett. 91 023110

    [16]

    Xu Z H, Wu Y, Hu B 2005 Appl. Phys. Lett. 87 263118

    [17]

    Berson S, Bettignies R de, Bailly S, Guillerez S, Jousselme B 2007 Adv. Funct. Mater. 17 3363

    [18]

    Ibrahim M A, Roth H K, Zhokhavets U, Gobsch G, Sensfuss S 2005 Sol. Energy Mate. Sol. Cells. 85 13

    [19]

    Hao Z H, Hu Z Y, Zhang J J, Hao Q Y, Zhao Y 2011 Acta Phys. Sin. 60 11716 (in Chinese) [郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖 2011 60 11716]

  • [1]

    Friend R H, Gymer R W, Holmes A B, Burroughes J H, Marks R N, Taliani C 1999 Nature 397 121

    [2]

    Yu H Z, Peng J B, Zhao X M 2008 Acta Phys. Sin. 57 3898 (in Chinese) [於黄忠, 彭俊彪, 周晓明 2008 57 3898]

    [3]

    Madhava Rao M V, Su Y K, Huang T S, Chen Y C 2010 Nano-Micro Lett. 2 242

    [4]

    Ebbesen T W, Lezec H J, Hiura H, Bennett J W, Ghaemi H F, Thio T 1996 Nature (London) 382 54

    [5]

    Liu Z F, Liu Q, Huang Y, Ma Y F, Yin S G, Zhang X Y, Sun W, Chen Y S 2008 Adv. Mater. 20 3924

    [6]

    Halls J J M, Walsh C A, Greenham N C, Marseglia E A, Friend R H, Moratti S C, Holmes A B 1995 Nature (London) 376 498

    [7]

    Bolotina K I, Sikesb K J, Jianga Z, Klimac M, Fudenberg G, Hone J, Kim P, Stormer H L 2008 Solid State Commun. 146 351

    [8]

    Yang Z, Gao R G, Hu N T, Chai J, Cheng Y W, Zhang L Y, Wei H, Eric Siu-Wai Kong, Zhang Y F 2012 Nano. Micro Lett. 4 1

    [9]

    Hong Z R, Huang Z H, Zeng X T 2006 Chem. Phys. Lett. 425 62

    [10]

    Wang X, Zhi L, Mullen K 2008 Nano Lett. 8 323

    [11]

    Hummers W S, Offeman R E 1958 J. Am. Chem. Soc. 80 1339

    [12]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V, Firsov A A 2005 Nature 438 197

    [13]

    Stankovich S, Dikin D A, Dommett G H B, Kohlhaas K M, Zimney E J, Stach E A, Piner R D, Nguyen S T, Ruoff R S 2006 Nature 442 282

    [14]

    Dini D, Barthel M, Schneider T, Ottmar M, Verma S, Hanack M 2003 Solid State Ionics. 165 289

    [15]

    Kyu W L, Lee S P, Choi H, Kyu H M, Jae W J, Kweon H, Cheol E J 2007 Appl. Phys. Lett. 91 023110

    [16]

    Xu Z H, Wu Y, Hu B 2005 Appl. Phys. Lett. 87 263118

    [17]

    Berson S, Bettignies R de, Bailly S, Guillerez S, Jousselme B 2007 Adv. Funct. Mater. 17 3363

    [18]

    Ibrahim M A, Roth H K, Zhokhavets U, Gobsch G, Sensfuss S 2005 Sol. Energy Mate. Sol. Cells. 85 13

    [19]

    Hao Z H, Hu Z Y, Zhang J J, Hao Q Y, Zhao Y 2011 Acta Phys. Sin. 60 11716 (in Chinese) [郝志红, 胡子阳, 张建军, 郝秋艳, 赵颖 2011 60 11716]

  • [1] 魏福贤, 刘俊宏, 彭腾, 汪波, 朱洪强, 陈晓莉, 熊祖洪. 利用热激子反向系间窜越的特征磁响应探测界面型OLED中的Dexter能量传递过程.  , 2023, 72(18): 187201. doi: 10.7498/aps.72.20230998
    [2] 姜文龙, 孟昭晖, 丛林, 汪津, 王立忠, 韩强, 孟凡超, 高永慧. 双量子阱结构OLED效率和电流的磁效应.  , 2010, 59(9): 6642-6646. doi: 10.7498/aps.59.6642
    [3] 胡 玥, 饶海波, 李君飞. ITO/有机半导体/金属结构OLED器件的数值模拟.  , 2008, 57(9): 5928-5932. doi: 10.7498/aps.57.5928
    [4] 王 军, 魏孝强, 饶海波, 成建波, 蒋亚东. 基于铱配合物材料的高效高稳定性有机发光二极管.  , 2007, 56(2): 1156-1161. doi: 10.7498/aps.56.1156
计量
  • 文章访问数:  6178
  • PDF下载量:  794
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-19
  • 修回日期:  2013-05-27
  • 刊出日期:  2013-09-05

/

返回文章
返回
Baidu
map