-
本文通过在前驱液中添加过量钇盐和铈的有机盐,采用三氟乙酸盐-金属有机沉积法(TFA-MOD) 在铝酸镧单晶基体上制备了含有纳米氧化钇和纳米铈酸钡的YBCO薄膜. 与纯YBCO薄膜相比,掺杂Y2O3/BaCeO3的YBCO膜的临界转变温度几乎保持不变,为91 K左右. 而掺杂Y2O3/BaCeO3的YBCO膜的临界电流密度达到5.0 MA/cm2 (77 K, 0T), 是纯YBCO膜临界电流密度的1.5倍.薄膜中的Y2O3和BaCeO3可能在YBCO内部起到了 有效的钉扎磁通作用.
-
关键词:
- 钇钡铜氧薄膜 /
- 纳米Y2O3和纳米BaCeO3 /
- 磁通钉扎 /
- 三氟乙酸盐-金属有机沉积
Enhancing the critical-current density of YBCO films is essential to gain a deeper understanding of the vortex pinning mechanisms and enable commercial applications of high-temperature superconductivity. Combined BaCeO3 and Y2O3 nanoparticles have been achieved to be co-doped in YBa2Cu3O7-x (YBCO) films by metalorganic deposition using trifluoroacetates (TFA-MOD). The formation of integrated nanoparticles increases the critical current density (Jc) of Y2O3/BaCeO3 doped-YBCO films while keeping the critical transition temperature (Tc) close to that in the pure YBCO films. YBCO film containing BaCeO3 and Y2O3 showed Tc value of 91 K and Jc value of 5 MA/cm2 at self-field (0 T, 77 K). The strongly enhanced flux pinning over a wide range of magnetic field may be attributed to the combined BaCeO3 and Y2O3 created by optimized TFA-MOD conditions.-
Keywords:
- YBCO films /
- BaCeO3/Y2O3 doping /
- flux pinning /
- TFA-MOD
[1] Dimos D, Chaudhari P Mannhart J 1990 Phys. Rev. B 41 4038
[2] Larkin A I Ovchinnikov, Yu N 1979 J. Low Temp. Phys. 34 409
[3] Crisan A, Fujiwara S, Nie J C, Sundaresan A, Ihara H 2001 Appl. Phys. Lett. 79 4547
[4] Sparing M, Backen E, Freudenberg T, Hhnel R, Rellinghaus B, Schultz L, Holzapfe B 2007 Supercond. Sci. Technol. 20 S239
[5] Gutierrez J, Puig T, Gibert M, Moreno C, Roma N, Pomar A, Obradors X 2009 Appl. Phys. Lett. 94 172513
[6] Vanpoucke D, Cottenier S, Speybroeckc V V, Bultinck P, Driessche I V 2012 Appl. Surf. Sci. 260 32
[7] Maiorov B, Baily S A, Zhou H, Ugurlu O, Kennison J A, Dowden P C, Holesinger T G, Foltyn S R, Civale L 2009 Nature Mater. 8 398
[8] Engel S, Thersleff T, Hhne R, Schultz L, Holzapfel B 2007 Appl. Phys. Lett. 90 102505
[9] Samoilenkov S V, Boytsova O V, Amelichev V A, Kaul A R 2011 Supercond. Sci. Technol. 24 055003
[10] Varanasi C V, Burke J, Brunke L, Wang H, Sumption M, Barnes P N 2007 J. Appl. Phys. 102 063909
[11] Ding F Z, Gu H W 2010 Acta Phys. Sin. 59 8142 (in Chinese) [丁发柱, 古宏伟 2010 59 8142]
[12] Ding F Z, Gu H W, Zhang T, Dai S T, Xiao L Y 2011 Chin. Phys. B 20 027402
[13] Ding F, Gu H, Zhang T, Wang H, Qu F, Dai S, Peng X, Cao J 2012 J. Alloys Compd. 513 277
[14] Hanisch J, Cai C, Huhne R, Schultz L, Holzapfel B 2005 Appl. Phys. Lett. 86 122508
[15] Kiessling A, Hänisch J, Thersleff T, Reich E, Weigand M, Hhne R, Sparing M, Holzapfel B, Durrell J H, Schultz1 L 2011 Supercond. Sci. Technol. 24 055018
[16] Ishii Y, Shimoyama J, Tazaki Y, Nakashima T, Horii S, Kishio K 2006 Appl. Phys. Lett. 89 202514
[17] Song X, Chen Z, Kim S, Matthew F D, Larbalestier D, Reeves J, Xie Y, Selvamanickam V 2006 Appl. Phys. Lett. 88 212508
[18] Develos-Bagarinao K, Yamasaki H 2011 Supercond. Sci. Technol. 24 065017
[19] Haugan T, Barnes P N, Wheeler R, Meisenkothen F, Sumption M 2004 Nature 430 867
-
[1] Dimos D, Chaudhari P Mannhart J 1990 Phys. Rev. B 41 4038
[2] Larkin A I Ovchinnikov, Yu N 1979 J. Low Temp. Phys. 34 409
[3] Crisan A, Fujiwara S, Nie J C, Sundaresan A, Ihara H 2001 Appl. Phys. Lett. 79 4547
[4] Sparing M, Backen E, Freudenberg T, Hhnel R, Rellinghaus B, Schultz L, Holzapfe B 2007 Supercond. Sci. Technol. 20 S239
[5] Gutierrez J, Puig T, Gibert M, Moreno C, Roma N, Pomar A, Obradors X 2009 Appl. Phys. Lett. 94 172513
[6] Vanpoucke D, Cottenier S, Speybroeckc V V, Bultinck P, Driessche I V 2012 Appl. Surf. Sci. 260 32
[7] Maiorov B, Baily S A, Zhou H, Ugurlu O, Kennison J A, Dowden P C, Holesinger T G, Foltyn S R, Civale L 2009 Nature Mater. 8 398
[8] Engel S, Thersleff T, Hhne R, Schultz L, Holzapfel B 2007 Appl. Phys. Lett. 90 102505
[9] Samoilenkov S V, Boytsova O V, Amelichev V A, Kaul A R 2011 Supercond. Sci. Technol. 24 055003
[10] Varanasi C V, Burke J, Brunke L, Wang H, Sumption M, Barnes P N 2007 J. Appl. Phys. 102 063909
[11] Ding F Z, Gu H W 2010 Acta Phys. Sin. 59 8142 (in Chinese) [丁发柱, 古宏伟 2010 59 8142]
[12] Ding F Z, Gu H W, Zhang T, Dai S T, Xiao L Y 2011 Chin. Phys. B 20 027402
[13] Ding F, Gu H, Zhang T, Wang H, Qu F, Dai S, Peng X, Cao J 2012 J. Alloys Compd. 513 277
[14] Hanisch J, Cai C, Huhne R, Schultz L, Holzapfel B 2005 Appl. Phys. Lett. 86 122508
[15] Kiessling A, Hänisch J, Thersleff T, Reich E, Weigand M, Hhne R, Sparing M, Holzapfel B, Durrell J H, Schultz1 L 2011 Supercond. Sci. Technol. 24 055018
[16] Ishii Y, Shimoyama J, Tazaki Y, Nakashima T, Horii S, Kishio K 2006 Appl. Phys. Lett. 89 202514
[17] Song X, Chen Z, Kim S, Matthew F D, Larbalestier D, Reeves J, Xie Y, Selvamanickam V 2006 Appl. Phys. Lett. 88 212508
[18] Develos-Bagarinao K, Yamasaki H 2011 Supercond. Sci. Technol. 24 065017
[19] Haugan T, Barnes P N, Wheeler R, Meisenkothen F, Sumption M 2004 Nature 430 867
计量
- 文章访问数: 6552
- PDF下载量: 575
- 被引次数: 0