-
基于联合实施微观相互作用玻色子模型的最大F旋方案 (sdIBM-Fmax)与γ射线能量-自旋曲线 (γ-ray energy over spin curves, E-GOS)方案, 成功描述了182Os核yrast带相继的SU(3)–U(5)–SU(3)结构相变, 由于缺少直观解释而显得抽象. 本文借助微观sdIBM-Fmax的微观参数与Bohr哈密顿量的势能曲面方程之间存在的泛函关系, 几何地给出了对这种相继相变途径的另外一种可能理解; 并阐述了在完全变形核的高角动量态中, 由于量子效应在高激发态与低激发态之间生成高简并的临界区, 提供了γ振动能量会变得低于转动能量的一个可能途径, 从而实现了SU(3)–U(5)的相变.
-
关键词:
- yrast带结构演化 /
- 势能曲面 /
- 相变临界区 /
- 182Os核
Nuclear structure phase transitions SU(3)–U(5)–SU(3) of the yrast-band structure in 182Os nucleus are successfully described, based on the association of microscopic interacting Boson model (IBM) with the γ-ray energy on spin curves (E-GOS). It is very abstract because of lack of concrete facts. A probable explanation of these one after the other phase transitions are geometrically given, with a functional relation of microscopic parameters in microscopic sdIBM-Fmax approach and potential energy surface in Bohr collective model. It is expounded that at high angular momentum, in a well-deformed nucleus, a probable way to the γ-vibrational energy can become lower than the rotational energy bcause there are a number of degeneracy states formed by quantum effect between the highter and lower excition states so as to achieve SU(3)–U(5) structue phase transition.-
Keywords:
- evolution of yrast-band structure /
- potential energy surface /
- critical region in phase transition /
- 182Os nucleus
[1] Landau L D, Lifshitz E M 1980 Statistical Physics (3rd Edn.) Part 1 (Oxford Pergamon Press) pp257-260, 446-516
[2] Wang Z C 2003 Thermodynamics and statistical physics (3rd Edn.) (Beijing: Higher education press) pp132-140 (in Chinese) [汪志诚 2003 热力学与统计物理 第三版 (北京: 高等教育出版社) 第132-140页]
[3] Sachdev S 1999 Quantum Phase Transitions (Cambridge U.K.: Cambridge University Press)
[4] Iachello F, Arima A 1987 The interacting boson model (Cambridge: Cambridge University Press) pp231-144
[5] Greiner W, Maruhn J A 1996 Nuclear models Springer-Verlag Berlin Heideberg pp99-205
[6] Cejnar P, Jolie J, Casten R F 2010 Rev. Mod. Phys. 82 2155
[7] Casten R F 2009 Progress in Particle and Nuclear Physics 62 183
[8] Bonatson D 2008 arXiv: nucl-th/0807.4992v1
[9] Jolie J, Casten R F, Brentano von 2001 Phys. Rev. Lett.87 162501
[10] Iachllo F 2000 Phys. Rev. Lett. 85 3580
[11] Iachello F 2001 Phys. Rev. Lett. 87 05250
[12] Rowed J, Welsh T A, Caprio M A 2009 Phys. Rev. C 79 054304
[13] Leviatan A 2007 Phys. Rev. Lett. 98 242502
[14] Williams E, Casperson R J, Werner V 2007 Phys. Rev. C 77 061302(R)
[15] Regan P H, Beausanf C W, Zarmfir N V 2003 Phys. Rev. Lett. 90 152502(4)
[16] Tong H, Zang C M, Shi Z Y, Wang H, Ni S Y 2010 Acta Phys. Sin. 59 3136 (in Chinese) [童红, 张春梅, 石筑一, 汪红, 倪绍勇 2010 59 3136]
[17] Shi Z Y, Tong H, Zhang H, Wang H, Lei Y X, Zhao X Z, Ni S Y 2009 Acta Phys. Sin. 58 4542 (in Chinese) [石筑一, 童红, 张欢, 汪红, 雷玉玺, 赵行知, 倪绍勇 2009 58 4542]
[18] Shi Z Y, Zang C M Tong H, Zhao X Z, Ni S Y 2008 Acta Phys. Sin. 57 1564 (in Chinese) [石筑一, 张春梅, 童红, 赵行知, 倪绍勇 2008 57 1564]
[19] Shi Z Y, Tong H, Shi Z Y, Zang C M, Zhao X Z, Ni S Y 2007 Acta Phys. Sin. 56 1329 (in Chinese) [ 石筑一, 童红, 石筑亚, 张春梅, 赵行知, 倪绍勇 2007 56 1329]
[20] Hao X, Zhu L H, Wu X G 2011, Chin. Phys. Lett. 28 112101
[21] Hao X, Zhu L H, Wu X G 2011 J. Phys. G 38 025102
[22] Isacker P V, Chen J Q 1981 Phys. Rev. C 24 684
[23] Yang Z S, Liu Y, Qi H 1984 Nucl. Phys. A 421 297
[24] Yang Z S, Liu Y, Tian X Q 1982 High Energy Phys. & Nucl. Phys. 6 472
[25] Liu Y X, Mu L Z, Wei H Q 2006 Phys. Lett. B 633 49
[26] Pattison L K, Cullen D M, Smith J E, Fletcher A M, Walker P M 2003 Phys. Rev. Lett. 91 182501
-
[1] Landau L D, Lifshitz E M 1980 Statistical Physics (3rd Edn.) Part 1 (Oxford Pergamon Press) pp257-260, 446-516
[2] Wang Z C 2003 Thermodynamics and statistical physics (3rd Edn.) (Beijing: Higher education press) pp132-140 (in Chinese) [汪志诚 2003 热力学与统计物理 第三版 (北京: 高等教育出版社) 第132-140页]
[3] Sachdev S 1999 Quantum Phase Transitions (Cambridge U.K.: Cambridge University Press)
[4] Iachello F, Arima A 1987 The interacting boson model (Cambridge: Cambridge University Press) pp231-144
[5] Greiner W, Maruhn J A 1996 Nuclear models Springer-Verlag Berlin Heideberg pp99-205
[6] Cejnar P, Jolie J, Casten R F 2010 Rev. Mod. Phys. 82 2155
[7] Casten R F 2009 Progress in Particle and Nuclear Physics 62 183
[8] Bonatson D 2008 arXiv: nucl-th/0807.4992v1
[9] Jolie J, Casten R F, Brentano von 2001 Phys. Rev. Lett.87 162501
[10] Iachllo F 2000 Phys. Rev. Lett. 85 3580
[11] Iachello F 2001 Phys. Rev. Lett. 87 05250
[12] Rowed J, Welsh T A, Caprio M A 2009 Phys. Rev. C 79 054304
[13] Leviatan A 2007 Phys. Rev. Lett. 98 242502
[14] Williams E, Casperson R J, Werner V 2007 Phys. Rev. C 77 061302(R)
[15] Regan P H, Beausanf C W, Zarmfir N V 2003 Phys. Rev. Lett. 90 152502(4)
[16] Tong H, Zang C M, Shi Z Y, Wang H, Ni S Y 2010 Acta Phys. Sin. 59 3136 (in Chinese) [童红, 张春梅, 石筑一, 汪红, 倪绍勇 2010 59 3136]
[17] Shi Z Y, Tong H, Zhang H, Wang H, Lei Y X, Zhao X Z, Ni S Y 2009 Acta Phys. Sin. 58 4542 (in Chinese) [石筑一, 童红, 张欢, 汪红, 雷玉玺, 赵行知, 倪绍勇 2009 58 4542]
[18] Shi Z Y, Zang C M Tong H, Zhao X Z, Ni S Y 2008 Acta Phys. Sin. 57 1564 (in Chinese) [石筑一, 张春梅, 童红, 赵行知, 倪绍勇 2008 57 1564]
[19] Shi Z Y, Tong H, Shi Z Y, Zang C M, Zhao X Z, Ni S Y 2007 Acta Phys. Sin. 56 1329 (in Chinese) [ 石筑一, 童红, 石筑亚, 张春梅, 赵行知, 倪绍勇 2007 56 1329]
[20] Hao X, Zhu L H, Wu X G 2011, Chin. Phys. Lett. 28 112101
[21] Hao X, Zhu L H, Wu X G 2011 J. Phys. G 38 025102
[22] Isacker P V, Chen J Q 1981 Phys. Rev. C 24 684
[23] Yang Z S, Liu Y, Qi H 1984 Nucl. Phys. A 421 297
[24] Yang Z S, Liu Y, Tian X Q 1982 High Energy Phys. & Nucl. Phys. 6 472
[25] Liu Y X, Mu L Z, Wei H Q 2006 Phys. Lett. B 633 49
[26] Pattison L K, Cullen D M, Smith J E, Fletcher A M, Walker P M 2003 Phys. Rev. Lett. 91 182501
计量
- 文章访问数: 6100
- PDF下载量: 417
- 被引次数: 0