搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

标签密集环境下天线互偶效应研究

佐磊 何怡刚 李兵 朱彦卿 方葛丰

引用本文:
Citation:

标签密集环境下天线互偶效应研究

佐磊, 何怡刚, 李兵, 朱彦卿, 方葛丰

Theory and measurement for mutual coupling effect of ultra high frequency radio-frequency identification in dense environments

Zuo Lei, He Yi-Gang, Li Bing, Zhu Yan-Qing, Fang Ge-Feng
PDF
导出引用
  • 基于射频识别技术原理及Friis传输方程, 导出了无源超高频射频识别系统链路模型, 结合二端口网络分析方法, 导出了标签密集环境下的标签天线互阻抗计算表达式.利用单阅读器单标签时的标签阻抗匹配条件, 基于功率传输系数及调制因子, 分析了互偶效应对系统链路的影响.在开阔室内环境中, 测试了双标签及标签单、双平面布置情形下的阅读器天线最小发射功率及系统识别率.测试结果表明, 双标签及双平面情形下, 阅读器天线最小发射功率变化率分别为(-7%, 11.6%)及(-10%, 12.5%).
    The close displacement of ultra high frequency radio-frequency identification (UHF RFID) tags can be considered as an electromagnetically interconnected system which causes the mutual coupling effect among antennas of tags, thereby resulting in change in impedance matching condition. Based on the principles of RFID technology and Friis propagation equation, a link budget model of UHF RFID is provided which consists of one reader and one tag. Expressions of mutual impedance in dense environments are derived by using a two-port network. Utilizing the parameters of power transmission coefficient and modulation factor, the variation of system performance is discussed in theory and tested by three experiments which are conducted in open indoor environment. The measurement results show that the change rate of minimum power transmitted by the reader antenna is in a range from -7% to 11.6% for two-tag scene and from -10% to 12.5% for two-plane arrangement.
    • 基金项目: 国家杰出青年基金(批准号:50925727)、国家自然科学基金(批准号:60876022)、国家自然科学基金青年科学基金(批准号:51107034)、国防预研重大项目(批准号:C1120110004)、湖南省科技计划(批准号:2011J4,2011JK2023)、湖南省自然科学基金(批准号:12JJA004)和湖南省教育厅科学研究项目(批准号:11C0479)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 50925727), the National Natural Science Foundation of China (Grant No. 60876022), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 51107034), the National Defense Advanced Research Project of China (Grant No. C1120110004), the Natural Science Foundation of Hunan Province, China (Grant No. 12JJA004), and the Research Foundation of Education Bureau of Hunan Province, China (Grant No. 11C0479).
    [1]

    Marrocco G 2011 Proc. IEEE Trans. Antennas Propag. 59 1019

    [2]

    Nikitin P V, Rao K V S 2006 Proc. IEEE Trans. Antennas Propag. 48 212

    [3]

    Tang Z J, He Y G 2009 Acta Phys. Sin. 58 5126 (in Chinese) [唐志军, 何怡刚 2009 58 5126]

    [4]

    Hou Z G, He Y G, Li B, She K, Zhu Y Q 2010 Acta Phys. Sin. 59 5606 (in Chinese) [侯周国, 何怡刚, 李兵, 佘开, 朱彦卿 2010 59 5606]

    [5]

    Li B, He Y G, Hou Z G, She K, Zuo L 2011 Acta Phys. Sin. 60 084202 (in Chinese) [李兵, 何怡刚, 侯周国, 佘开, 佐磊 2011 60 084202]

    [6]

    Baker H, LaGrone A H 1962 IEEE IRE Trans. Antennas Propag. 10 172

    [7]

    Alexopoulos N G, Rana I E 1981 Proc. IEEE Trans. Antennas Propag. 29 106

    [8]

    Weigand S M, Dobkin D M 2006 Proc. IEEE Trans. Antennas Propag. Society Int. Symp. Albuquerque, USA July 9-14, 2006 p1027

    [9]

    Nikitin P V, Rao K V S 2009 IEEE Trans. Ind. Electron. 56 2374

    [10]

    Dobkin D M 2007 The RF in RFID: Passive UHF RFID in Practice (Burlington: Elsevier) p305

    [11]

    Balanis C A 2005 Antenna Theory, Analysis and Design (3rd Ed.) (Hoboken: Wiley) p468

    [12]

    Lu F, Chen X S, Ye T T 2009 2009 IEEE International Conference on RFID, Orlando, USA, April 27-28, 2009 p330

  • [1]

    Marrocco G 2011 Proc. IEEE Trans. Antennas Propag. 59 1019

    [2]

    Nikitin P V, Rao K V S 2006 Proc. IEEE Trans. Antennas Propag. 48 212

    [3]

    Tang Z J, He Y G 2009 Acta Phys. Sin. 58 5126 (in Chinese) [唐志军, 何怡刚 2009 58 5126]

    [4]

    Hou Z G, He Y G, Li B, She K, Zhu Y Q 2010 Acta Phys. Sin. 59 5606 (in Chinese) [侯周国, 何怡刚, 李兵, 佘开, 朱彦卿 2010 59 5606]

    [5]

    Li B, He Y G, Hou Z G, She K, Zuo L 2011 Acta Phys. Sin. 60 084202 (in Chinese) [李兵, 何怡刚, 侯周国, 佘开, 佐磊 2011 60 084202]

    [6]

    Baker H, LaGrone A H 1962 IEEE IRE Trans. Antennas Propag. 10 172

    [7]

    Alexopoulos N G, Rana I E 1981 Proc. IEEE Trans. Antennas Propag. 29 106

    [8]

    Weigand S M, Dobkin D M 2006 Proc. IEEE Trans. Antennas Propag. Society Int. Symp. Albuquerque, USA July 9-14, 2006 p1027

    [9]

    Nikitin P V, Rao K V S 2009 IEEE Trans. Ind. Electron. 56 2374

    [10]

    Dobkin D M 2007 The RF in RFID: Passive UHF RFID in Practice (Burlington: Elsevier) p305

    [11]

    Balanis C A 2005 Antenna Theory, Analysis and Design (3rd Ed.) (Hoboken: Wiley) p468

    [12]

    Lu F, Chen X S, Ye T T 2009 2009 IEEE International Conference on RFID, Orlando, USA, April 27-28, 2009 p330

  • [1] 姚佳烽, 胡松佩, 杨璐, 吴阳, 韩伟, 刘凯. 基于生物阻抗谱的舌体肿瘤组织识别方法.  , 2021, 70(15): 158704. doi: 10.7498/aps.70.20210297
    [2] 曾造金, 马乔生, 胡林林, 蒋艺, 胡鹏, 陈洪斌. G波段扩展互作用速调管的理论分析与设计.  , 2019, 68(15): 154102. doi: 10.7498/aps.68.20190264
    [3] 闫丽云, 刘家晟, 张好, 张临杰, 肖连团, 贾锁堂. 基于量子相干效应的无芯射频识别标签的空间散射场测量.  , 2017, 66(24): 243201. doi: 10.7498/aps.66.243201
    [4] 邓芳明, 何怡刚, 佐磊, 李兵, 吴可汗. 基于无源超高频射频识别标签的湿度传感器设计.  , 2014, 63(18): 188402. doi: 10.7498/aps.63.188402
    [5] 佐磊, 何怡刚, 李兵, 朱彦卿, 方葛丰. 无源超高频射频识别系统路径损耗研究.  , 2013, 62(14): 144101. doi: 10.7498/aps.62.144101
    [6] 王叶兵, 陈洁, 田晓, 高峰, 常宏. 锶原子互组跃迁谱的实验研究.  , 2012, 61(2): 020601. doi: 10.7498/aps.61.020601
    [7] 佐磊, 何怡刚, 李兵, 朱彦卿, 方葛丰. 无源超高频RFID系统识别区域分析及优化.  , 2012, 61(24): 244103. doi: 10.7498/aps.61.244103
    [8] 李兵, 何怡刚, 侯周国, 佘开, 佐磊. 无源标签反向散射调制性能的分析和测试.  , 2011, 60(8): 084202. doi: 10.7498/aps.60.084202
    [9] 侯周国, 何怡刚, 李兵. 基于马尔科夫链的射频识别防碰撞测试.  , 2011, 60(2): 025211. doi: 10.7498/aps.60.025211
    [10] 侯周国, 何怡刚, 李兵, 佘开, 朱彦卿. 基于软件无线电的无源超高频RFID标签性能测试.  , 2010, 59(8): 5606-5612. doi: 10.7498/aps.59.5606
    [11] 郑力明, 王发强, 刘颂豪. 光声互作用模型中的Pancharatnam相位.  , 2009, 58(5): 2884-2888. doi: 10.7498/aps.58.2884
    [12] 唐志军, 何怡刚. 无源射频识别系统中的雷达截面分析与计算.  , 2009, 58(7): 5126-5132. doi: 10.7498/aps.58.5126
    [13] 向 菲, 丘水生. 基于混沌系统互扰的流密码设计.  , 2008, 57(10): 6132-6138. doi: 10.7498/aps.57.6132
    [14] 王文静, 萧淑琴, 刘宜华, 陈卫平, 代由勇, 姜 山, 袁慧敏, 颜世申. 射频溅射功率对FeZrBCu软磁合金薄膜巨磁阻抗效应的影响.  , 2005, 54(4): 1821-1825. doi: 10.7498/aps.54.1821
    [15] 王本仁. 槽中双孤子互作用的微扰求解.  , 2002, 51(4): 823-827. doi: 10.7498/aps.51.823
    [16] 许心光, 杨旭东, 王正平, 王东, 杜晨林, 周广勇, 许贵宝, 傅琨, 邵宗书, 邵耀鹏. KNSBN晶体猫式互抽运相位共轭光特性.  , 2002, 51(10): 2266-2265. doi: 10.7498/aps.51.2266
    [17] 王锐. 裂纹与夹杂物的互作用.  , 1990, 39(12): 1908-1914. doi: 10.7498/aps.39.1908
    [18] 张裕恒, 刘宏宝. a-Ge/Ag迭层中的临近效应和互扩散.  , 1988, 37(6): 950-958. doi: 10.7498/aps.37.950
    [19] 李正中, 胡筱欣, 王金才. 稀磁合金的杂质互作用效应.  , 1985, 34(2): 145-154. doi: 10.7498/aps.34.145
    [20] 杨振青. 一维互作用扭折-声子气体的统计理论.  , 1981, 30(3): 389-400. doi: 10.7498/aps.30.389
计量
  • 文章访问数:  7725
  • PDF下载量:  461
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-31
  • 修回日期:  2012-08-30
  • 刊出日期:  2013-02-05

/

返回文章
返回
Baidu
map