搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

InAs双壁管状团簇及双壁纳米管结构、稳定性和电子特性的第一性原理研究

吴鹏 刘立仁 祝恒江 邹艳波 刘志锋

引用本文:
Citation:

InAs双壁管状团簇及双壁纳米管结构、稳定性和电子特性的第一性原理研究

吴鹏, 刘立仁, 祝恒江, 邹艳波, 刘志锋

Structures, stabilities and electronic properties of InAs double-walled tubelike clusters and nanotubes

Wu Peng, Liu Li-Ren, Zhu Heng-Jiang, Zou Yan-Bo, Liu Zhi-Feng
PDF
导出引用
  • 利用第一性原理研究InAs双壁管状团簇及其双壁纳米管的几何结构、 稳定性和电子特性. 几何结构分析表明, In(3pk+4p)/2As(3pk+4p)/2 (p=6,8,10, k=3,4,···,11) 双壁管状团簇的几何构型符合欧拉公式,并得到In(3pk+4p)/2As(3pk+4p)/2双壁管状团簇及(m,n)@(2m,2n) (m=n=3,4,5) 型InAs纳米管的管径公式. 电子特性的计算结果表明: [6,k]@[12,k+2]型管状团簇和(3,3)@(6,6)型纳米管稳定性最高; 利用前线轨道随尺寸的变化规律, 得到InAs双壁管状团簇的生长机理, 阐明实验合成InAs纳米管的微观机理; 态密度和能带研究结果表明, InAs双壁管状团簇及双壁纳米管都具有半导体特性.
    The structure evolutions and electronic properties of InAs Double-Walled tubelike clusters and nanotubes are studied by first-principles theory. Tubelike clusters, In(3pk+4p)/2As(3pk+4p)/2 (p=6, 8, 10, k=3-11), and the counterpart nanotubes, (m,n)@(2m,2n) (m=n=3,4,5), are analyzed. All geometric structures of clusters and nanotubes are optimized by using density functional theory with generalized gradient approximation, and they obey the Euler formula. The tube diameter formula is obtained. Size-dependent properties of clusters and nanotubes, such as binding energy, HOMO-LUMO gaps, density of state and energy band structures are calculated and discussed. The results show that both [6,k]@[12,k+2] and (3,3)@(6,6) possess relatively high stabilities in the corresponding systems. They also explain why the long and stable tublike clusters can be successfully obtined, and why InAs nanotubes can be synthesized experimentally. All of the double-walled tubelike clusters and nanotubes possess the characteristics of semiconductor.
    • 基金项目: 新疆维吾尔自治区理论物理重点学科基金 (批准号: LLWLY201105)、新疆师范大学研究生创新基金(批准号: 20121217)、 新疆维吾尔自治区自然科学基金(批准号: 2010211A21)和新疆维吾尔自治区高校科研计划重点项目 (批准号: XJEDU2009127)资助的课题.
    • Funds: Project supported by the Key Subject of Theoretical Physics of Xinjiang Uygur Autonomous Region (The graduate innovation Fund: LLWLY201105), Innovation Fund for the Graduate Students of XinjJiang Normal University (Grant No. 20121217), the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant No. 2010211A21), and the Fund of the Education Department of Xinjiang Uygur Autonomous Region of China (Grant No. XJEDU2009127).
    [1]

    Ajayanl P M, Zhou O Z 2001 Carbon Nanotubes (Berlin Heidelberg: Springer-Verlag) p391

    [2]

    Guo L J, Zheng X H, Liu C S, Zeng Z 2010 arXiv: 1007.1495v1 [cond-mat.mes-hall]

    [3]

    Seeger T, Redlieh P K , Rhle M 2000 Adv. Mater. 12 279

    [4]

    Li Y, Xie S, Wei B, Lian G, Zhou W, Tang D, Zou X, Liu Z, Wang G 2001 Solid State Commun. 119 51

    [5]

    Li Y B, Xie S S, Zou X P ,Tang D S, Liu Z Q, Zhou W Y ,Wang G 2001 J. Cryst. Growth 223 125

    [6]

    Zhang X J, Zhao M W, He T, Li W F, Lin X H, Wang Z H, Xi Z X ,Liu X D, Xia Y Y 2008 Solid State Commun. 147 165

    [7]

    Yang J H, Gong J, Fan H G, Yang L L, Zhang Y J, Zseb K O, Chen G 2004 Chem. Res. Chin. Uni. 20 747

    [8]

    Xu Z, Golberg D, Bandoa Y 2009 Chem. Phys. Lett. 480 110

    [9]

    Wang J L, Gu Y L, Zhang G W, Zhang Z H 2010 J. Nanomater. 2010 6

    [10]

    Yoshioka M, Takahashi N, Nakamara T 2004 Mater. Chem. Phys. 86 74

    [11]

    Chen G X, Zhang Y, Wang D D, Zhang J M 2010 J. Mol. Struct. 956 77

    [12]

    Louail L, Maouche D, Hachemi A 2006 Mater. Lett. 60 3269

    [13]

    Bolshakova I, Kost Y, Makido O, Shurygin F 2008 J. Cryst. Growth 310 2254

    [14]

    Wernersson L E, Lind E, Lembke J, Martinsson B, Seifert W 2005 J. Cryst. Growth 280 81

    [15]

    Mohan P, Motohisa J, Fukui T 2006 Appl. Phys. Lett. 88 013110

    [16]

    Costales A, Kandalam A K, Franco R, Pandey R 2002 J. Phys. Chem. B 106 1940

    [17]

    Costales A, Pandey R 2002 Chem. Phys. Lett. 362 210

    [18]

    Liu Z F, Zhu H , Chen H, Liu L 2011 Acta Phys. -Chim. Sin. 27 2079 (in Chinese) [刘志峰, 祝恒江, 陈杭, 刘立仁 2011 物理化学学报 27 2079]

    [19]

    Mildred S, Avouris D P 2001 Carbon Nanotubes (Berlin Heidelberg:Springer-Verlag ) p1

    [20]

    Mildred S, Dresselhaus, Endo M 2001 Carbon Nanotubes (Berlin Heidelberg: Springer-Verlag ) p11

    [21]

    Dai H J 2001 Carbon Nanotubes (Berlin Heidelberg: Springer-Verlag ) p29

    [22]

    Wei J Q, Zhang X F, Wang K L 2006 Carbon Nanotube Macrostructures (1stEd.)(Beijing: Tisnghua University press) p4 (in Chinese) [韦进全, 张先锋, 王昆林 2006 碳纳米管宏观体(第一版)(北京: 清华大学出版社) 第4页]

    [23]

    Riichiro S, Kataura H 2001 Carbon Nanotubes (Berlin Heidelberg: Springer-Verlag) p213

    [24]

    Tomioka K, Mohan P, Noborisaka 2007 J. Crys. Grow. 298 644

    [25]

    Xu Y G, Ji D, Shen X Y, Wang X L, Li J M 2006 Chin. Phys. Lett. 23 1757

    [26]

    Costales A, Kandalam A K, Franco R, Pandey R 2002 J. Phys. Chem. B 106 1709

    [27]

    Costales A, Pandey R 2002 Chem. Phys. Lett. 362 210

    [28]

    Aurora C, Anil K K, Ruth F, Ravindra P 2002 J. Phys. Chem. B 106 1940

    [29]

    Mohan P, Motohisa J, Fukui T 2006 Appl. Phys. Lett. 88 133105

    [30]

    Bjork M T, Ohlsson B J, Sass T, Peersson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 80 1058

    [31]

    Liu J J 2010 Acta Phys. Sin. 59 6466 (in Chinese) [刘建军 2010 59 6466]

    [32]

    Zhang S L, Zhang Y H, Huang S P, Liu H, Tian H P 2010 Chem. Phys. Lett.498 172

    [33]

    Zhang L L, Han P D, Zhang C L, Dong M H, Yang Y Q, Gu X Y 2011 Acta Phys. -Chim. Sin. 27 1609 (in Chinese) [张莉莉, 韩培德, 张彩丽, 董明慧, 杨艳青, 古向阳 2011 物理化学学报 27 1069]

    [34]

    Chen G D, Wang L D, Zhang J Q, Cao D C, An B, Ding F C, Liang J K 2008 Acta Phys. Sin. 57 7164 (in Chinese) [陈国栋, 王六定, 张教强, 曹得财, 安博, 丁富才, 梁锦奎 2008 57 7164]

    [35]

    Sun W F, Zhao L C 2011 Physica E 43 1099

  • [1]

    Ajayanl P M, Zhou O Z 2001 Carbon Nanotubes (Berlin Heidelberg: Springer-Verlag) p391

    [2]

    Guo L J, Zheng X H, Liu C S, Zeng Z 2010 arXiv: 1007.1495v1 [cond-mat.mes-hall]

    [3]

    Seeger T, Redlieh P K , Rhle M 2000 Adv. Mater. 12 279

    [4]

    Li Y, Xie S, Wei B, Lian G, Zhou W, Tang D, Zou X, Liu Z, Wang G 2001 Solid State Commun. 119 51

    [5]

    Li Y B, Xie S S, Zou X P ,Tang D S, Liu Z Q, Zhou W Y ,Wang G 2001 J. Cryst. Growth 223 125

    [6]

    Zhang X J, Zhao M W, He T, Li W F, Lin X H, Wang Z H, Xi Z X ,Liu X D, Xia Y Y 2008 Solid State Commun. 147 165

    [7]

    Yang J H, Gong J, Fan H G, Yang L L, Zhang Y J, Zseb K O, Chen G 2004 Chem. Res. Chin. Uni. 20 747

    [8]

    Xu Z, Golberg D, Bandoa Y 2009 Chem. Phys. Lett. 480 110

    [9]

    Wang J L, Gu Y L, Zhang G W, Zhang Z H 2010 J. Nanomater. 2010 6

    [10]

    Yoshioka M, Takahashi N, Nakamara T 2004 Mater. Chem. Phys. 86 74

    [11]

    Chen G X, Zhang Y, Wang D D, Zhang J M 2010 J. Mol. Struct. 956 77

    [12]

    Louail L, Maouche D, Hachemi A 2006 Mater. Lett. 60 3269

    [13]

    Bolshakova I, Kost Y, Makido O, Shurygin F 2008 J. Cryst. Growth 310 2254

    [14]

    Wernersson L E, Lind E, Lembke J, Martinsson B, Seifert W 2005 J. Cryst. Growth 280 81

    [15]

    Mohan P, Motohisa J, Fukui T 2006 Appl. Phys. Lett. 88 013110

    [16]

    Costales A, Kandalam A K, Franco R, Pandey R 2002 J. Phys. Chem. B 106 1940

    [17]

    Costales A, Pandey R 2002 Chem. Phys. Lett. 362 210

    [18]

    Liu Z F, Zhu H , Chen H, Liu L 2011 Acta Phys. -Chim. Sin. 27 2079 (in Chinese) [刘志峰, 祝恒江, 陈杭, 刘立仁 2011 物理化学学报 27 2079]

    [19]

    Mildred S, Avouris D P 2001 Carbon Nanotubes (Berlin Heidelberg:Springer-Verlag ) p1

    [20]

    Mildred S, Dresselhaus, Endo M 2001 Carbon Nanotubes (Berlin Heidelberg: Springer-Verlag ) p11

    [21]

    Dai H J 2001 Carbon Nanotubes (Berlin Heidelberg: Springer-Verlag ) p29

    [22]

    Wei J Q, Zhang X F, Wang K L 2006 Carbon Nanotube Macrostructures (1stEd.)(Beijing: Tisnghua University press) p4 (in Chinese) [韦进全, 张先锋, 王昆林 2006 碳纳米管宏观体(第一版)(北京: 清华大学出版社) 第4页]

    [23]

    Riichiro S, Kataura H 2001 Carbon Nanotubes (Berlin Heidelberg: Springer-Verlag) p213

    [24]

    Tomioka K, Mohan P, Noborisaka 2007 J. Crys. Grow. 298 644

    [25]

    Xu Y G, Ji D, Shen X Y, Wang X L, Li J M 2006 Chin. Phys. Lett. 23 1757

    [26]

    Costales A, Kandalam A K, Franco R, Pandey R 2002 J. Phys. Chem. B 106 1709

    [27]

    Costales A, Pandey R 2002 Chem. Phys. Lett. 362 210

    [28]

    Aurora C, Anil K K, Ruth F, Ravindra P 2002 J. Phys. Chem. B 106 1940

    [29]

    Mohan P, Motohisa J, Fukui T 2006 Appl. Phys. Lett. 88 133105

    [30]

    Bjork M T, Ohlsson B J, Sass T, Peersson A I, Thelander C, Magnusson M H, Deppert K, Wallenberg L R, Samuelson L 2002 Appl. Phys. Lett. 80 1058

    [31]

    Liu J J 2010 Acta Phys. Sin. 59 6466 (in Chinese) [刘建军 2010 59 6466]

    [32]

    Zhang S L, Zhang Y H, Huang S P, Liu H, Tian H P 2010 Chem. Phys. Lett.498 172

    [33]

    Zhang L L, Han P D, Zhang C L, Dong M H, Yang Y Q, Gu X Y 2011 Acta Phys. -Chim. Sin. 27 1609 (in Chinese) [张莉莉, 韩培德, 张彩丽, 董明慧, 杨艳青, 古向阳 2011 物理化学学报 27 1069]

    [34]

    Chen G D, Wang L D, Zhang J Q, Cao D C, An B, Ding F C, Liang J K 2008 Acta Phys. Sin. 57 7164 (in Chinese) [陈国栋, 王六定, 张教强, 曹得财, 安博, 丁富才, 梁锦奎 2008 57 7164]

    [35]

    Sun W F, Zhao L C 2011 Physica E 43 1099

  • [1] 曾永辉, 江五贵, Qin Qing-Hua. 螺旋上升对自激发锯齿型双壁碳纳米管振荡行为的影响.  , 2016, 65(14): 148802. doi: 10.7498/aps.65.148802
    [2] 曹平, 罗成林, 陈贵虎, 韩典荣, 朱兴凤, 戴亚飞. 通量可控的双壁碳纳米管水分子泵.  , 2015, 64(11): 116101. doi: 10.7498/aps.64.116101
    [3] 邓伟胤, 朱瑞, 邓文基. 有限尺寸石墨烯的电子态.  , 2013, 62(8): 087301. doi: 10.7498/aps.62.087301
    [4] 姚小虎, 张晓晴, 韩强. 轴向冲击载荷作用下双壁碳纳米管的动力屈曲.  , 2011, 60(9): 096202. doi: 10.7498/aps.60.096202
    [5] 宋建军, 张鹤鸣, 戴显英, 宣荣喜, 胡辉勇, 王冠宇. 不同晶系应变Si状态密度研究.  , 2011, 60(4): 047106. doi: 10.7498/aps.60.047106
    [6] 刘建军. 掺Ga对ZnO电子态密度和光学性质的影响.  , 2010, 59(9): 6466-6472. doi: 10.7498/aps.59.6466
    [7] 王 磊, 张忠强, 张洪武. 双壁碳纳米管电浸润现象的分子动力学模拟.  , 2008, 57(11): 7069-7077. doi: 10.7498/aps.57.7069
    [8] 谌雄文, 施振刚, 谌宝菊, 宋克慧. T型耦合双量子点系统的非对等Kondo共振分裂传输.  , 2008, 57(4): 2421-2426. doi: 10.7498/aps.57.2421
    [9] 王 磊, 张洪武, 王晋宝. 范德华力对双壁碳纳米管轴向压缩屈曲行为的影响.  , 2007, 56(3): 1506-1513. doi: 10.7498/aps.56.1506
    [10] 张立云, 彭永进, 金庆华, 王玉芳, 李宝会, 丁大同. 单壁纳米管的弹性性质.  , 2006, 55(8): 4193-4196. doi: 10.7498/aps.55.4193
    [11] 倪向贵, 殷建伟. 拉伸条件下双壁碳纳米管弹性性能的原子模拟.  , 2006, 55(12): 6522-6525. doi: 10.7498/aps.55.6522
    [12] 张 辉, 张国英, 王瑞丹, 周永军, 李 星. 无序二元合金(NixCu1-x)不同解理面上O吸附对Cu偏析的影响.  , 2005, 54(11): 5356-5361. doi: 10.7498/aps.54.5356
    [13] 缪江平, 吴宗汉, 孙承休, 孙岳明. 表面等离极化激元对电荷输运影响的自洽场理论研究Ⅱ——MIM体系分子轨道场的计算与分析.  , 2005, 54(5): 2282-2290. doi: 10.7498/aps.54.2282
    [14] 薛卫东, 陈召勇, 杨 春, 李言荣. 四方相BaTiO3铁电性的第一性原理研究.  , 2005, 54(2): 857-862. doi: 10.7498/aps.54.857
    [15] 陈将伟, 杨林峰. 有限长双壁碳纳米管的电子输运性质.  , 2005, 54(5): 2183-2187. doi: 10.7498/aps.54.2183
    [16] 唐娜斯, 颜晓红, 丁建文. 管长和管径对单壁碳纳米管电导的影响.  , 2005, 54(1): 333-337. doi: 10.7498/aps.54.333
    [17] 宋 骏, 陈 雷, 刘德胜, 解士杰. DNA分子能带结构与电子态研究.  , 2004, 53(8): 2792-2795. doi: 10.7498/aps.53.2792
    [18] 刘晓东, 王义全, 许兴胜, 程丙英, 张道中. 具有态守恒赝隙的光子晶体中两能级原子自发辐射的增强与抑制.  , 2004, 53(1): 125-131. doi: 10.7498/aps.53.125
    [19] 韩亦文, 洪 云. Schwarzschild-de-Sitter黑洞宇宙视界量子态的熵.  , 2004, 53(10): 3270-3273. doi: 10.7498/aps.53.3270
    [20] 刘晓东, 李曙光, 许兴胜, 王义全, 程丙英, 张道中. 用不同密度分布的发光分子探测光子晶体的全态密度.  , 2004, 53(1): 132-136. doi: 10.7498/aps.53.132
计量
  • 文章访问数:  9497
  • PDF下载量:  571
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-07-01
  • 修回日期:  2012-07-10
  • 刊出日期:  2012-12-05

/

返回文章
返回
Baidu
map