-
以揭示共晶系合金在不同过冷度下凝固时初生相的选择规律和凝固组织形成机理为目的, 用熔融玻璃净化和循环过热相结合的方法, 将Ni100-xPx(x=18, 19, 19.6, 20, 21, 原子百分比)合金过冷至平衡液相线以下不同的温度, 用高速红外测温仪记录了试样的凝固冷却曲线, 详尽分析了试样的凝固组织.结果表明, 过冷Ni-P合金快速凝固过程中析出的初生相为α-Ni/Ni3P耦合共晶时, 整个凝固过程中仅出现一次再辉, 在所形成的异常共晶组织中α-Ni颗粒大小分布均匀;而当某一共晶相优先析出时, 另外一相需要在残留液相中重新形核, 致使凝固过程中出现两次再辉, 相应形成颗粒相大小截然不同的两类异常共晶组织;据此绘制了Ni-P合金初生相为共生共晶的区域. Ni-P合金中α-Ni的生长动力学明显快于Ni3P, 使得在大过冷度下过共晶合金也以α-Ni作为初生相进行凝固.In order to gain an insight into the primary phase selection and solidification structure formation while undercooled eutectic alloys solidify, Ni100-xPx (x=18, 19, 19.6, 20, 21, atomic percent) alloy melts are undercooled to different temperatures below the equilibrium liquidus. The recalescence behavior associated with rapid solidification is monitored by a high-speed infrared pyrometer, and the solidification structure is analyzed systematically. When α-Ni/Ni3P regular eutectic forms as the primary phase during rapid solidification, single recalescence event takes place. In the resulting anomalous eutectic, fine granular grains of α-Ni are distributed uniformly in the Ni3P matrix. When the primary phase is one of the eutectic phases, however, there is a second recalescence event following the first one, resulting from nucleation of the other phase in the remaining liquid and the subsequent rapid eutectic growth. In this case, there are two types of granular grains whose sizes are significantly different from those in the anomalous eutectics. Finally, a coupled growth zone of eutectics is determined. At large undercoolings, α-Ni rather than Ni3P solidifies as the primary phase even in the Ni-P hyper-eutectic alloys due to its rapider growth kinetics.
-
Keywords:
- undercooled /
- recalescence /
- anomalous eutectic /
- coupled zone
[1] Li G, Gao Y P, Liu R P 2007 J. Non-Cryst. Solids 353 4199
[2] Peng L H, Gui H M, Li C, Jiang D L 2011 Chin. Phys. B 20 060701
[3] Dong Z F, Ma Y H, Lu K 1994 Scripta Metall. Mater. 31 81
[4] Lin S Z, Hei Z K 1984 Acta Phys. Sin. 33 302 (in Chinese) [林树智, 黑祖昆 1984 33 302]
[5] Weil R, Lee J H, Kim P K 1989 Plat. Surf. Finish 76 62
[6] Paseka I 2008 Electrochim. Acta 53 4537
[7] Abdel Hameed R M, Fekry A M 2010 Electrochim. Acta 55 5922
[8] Zang D Y, Wang H P, Wei B B 2007 Acta Phys. Sin. 56 4804 (in Chinese) [臧渡洋, 王海鹏, 魏柄波 2007 56 4804]
[9] Li J F, Jie W Q, Zhao S, Zhou Y H 2007 Metall. Mater. Trans. A 38 1806
[10] Zhao S, Li J F, Liu L, Zhou Y H 2009 J. Cryst. Growth 311 1387
[11] Zhao S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1917
[12] Pu J, Feng W J, Xiao J Z, Gan Z H, Yui H Y, Cui K 2003 J. Cryst. Growth 256 139
[13] Huang Q S, Liu L, Li J F, Zhou Y H 2010 J. Phase Equilib. Diffus. 31 532
[14] Wu Y, Piccone T Y, Shiohara Y, Kurz M 1987 Metall. Trans. A 18 915
[15] Lu S Y, Li J F, Zhou Y H 2007 J. Cryst. Growth 309 103
[16] Lee K L, Nash P 1991 Phase Diagrams of Binary Nickel Alloys (Ohio: ASM International) p2833
[17] Li J F, Li X L, Liu L, Lu S Y 2008 J. Mater. Res. 23 2139
[18] Yang C, Gao J, Zhang Y K, Kolbe M, Herlach D M 2011 Acta Meter. 59 3915
[19] Zhang Z Z, Song G S, Yang G C, Zhou Y H 2000 Prog. Nat. Sci. 10 54 (in Chinese) [张振忠, 宋广生, 杨根仓, 周尧和 2000 自然科学进展 10 54]
[20] Wei B, Herlach D M, Feuerbacher B, Sommer F 1993 Acta Metall. Mater. 41 1801
[21] Wang D, Li Y, Sun B B, Sui M L, Lu K, Ma E 2004 Appl. Phys. Lett. 84 4029
[22] Tan H, Zhang Y, Ma D, Feng Y P, Li Y 2003 Acta Mater. 51 4551
[23] Wang Z Z, Wang N, Yao W J 2010 Acta Phys. Sin. 39 7431 (in Chinese) [王振中, 王楠, 姚文静 2010 39 7431]
-
[1] Li G, Gao Y P, Liu R P 2007 J. Non-Cryst. Solids 353 4199
[2] Peng L H, Gui H M, Li C, Jiang D L 2011 Chin. Phys. B 20 060701
[3] Dong Z F, Ma Y H, Lu K 1994 Scripta Metall. Mater. 31 81
[4] Lin S Z, Hei Z K 1984 Acta Phys. Sin. 33 302 (in Chinese) [林树智, 黑祖昆 1984 33 302]
[5] Weil R, Lee J H, Kim P K 1989 Plat. Surf. Finish 76 62
[6] Paseka I 2008 Electrochim. Acta 53 4537
[7] Abdel Hameed R M, Fekry A M 2010 Electrochim. Acta 55 5922
[8] Zang D Y, Wang H P, Wei B B 2007 Acta Phys. Sin. 56 4804 (in Chinese) [臧渡洋, 王海鹏, 魏柄波 2007 56 4804]
[9] Li J F, Jie W Q, Zhao S, Zhou Y H 2007 Metall. Mater. Trans. A 38 1806
[10] Zhao S, Li J F, Liu L, Zhou Y H 2009 J. Cryst. Growth 311 1387
[11] Zhao S, Li J F, Liu L, Zhou Y H 2009 Chin. Phys. B 18 1917
[12] Pu J, Feng W J, Xiao J Z, Gan Z H, Yui H Y, Cui K 2003 J. Cryst. Growth 256 139
[13] Huang Q S, Liu L, Li J F, Zhou Y H 2010 J. Phase Equilib. Diffus. 31 532
[14] Wu Y, Piccone T Y, Shiohara Y, Kurz M 1987 Metall. Trans. A 18 915
[15] Lu S Y, Li J F, Zhou Y H 2007 J. Cryst. Growth 309 103
[16] Lee K L, Nash P 1991 Phase Diagrams of Binary Nickel Alloys (Ohio: ASM International) p2833
[17] Li J F, Li X L, Liu L, Lu S Y 2008 J. Mater. Res. 23 2139
[18] Yang C, Gao J, Zhang Y K, Kolbe M, Herlach D M 2011 Acta Meter. 59 3915
[19] Zhang Z Z, Song G S, Yang G C, Zhou Y H 2000 Prog. Nat. Sci. 10 54 (in Chinese) [张振忠, 宋广生, 杨根仓, 周尧和 2000 自然科学进展 10 54]
[20] Wei B, Herlach D M, Feuerbacher B, Sommer F 1993 Acta Metall. Mater. 41 1801
[21] Wang D, Li Y, Sun B B, Sui M L, Lu K, Ma E 2004 Appl. Phys. Lett. 84 4029
[22] Tan H, Zhang Y, Ma D, Feng Y P, Li Y 2003 Acta Mater. 51 4551
[23] Wang Z Z, Wang N, Yao W J 2010 Acta Phys. Sin. 39 7431 (in Chinese) [王振中, 王楠, 姚文静 2010 39 7431]
计量
- 文章访问数: 7188
- PDF下载量: 479
- 被引次数: 0