搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于组合透镜与渐变折射率光纤改进激光器耦合效率的新方法

延凤平 刘鹏 谭中伟 陶沛琳 李琦 彭万敬 冯亭 谭思宇

引用本文:
Citation:

基于组合透镜与渐变折射率光纤改进激光器耦合效率的新方法

延凤平, 刘鹏, 谭中伟, 陶沛琳, 李琦, 彭万敬, 冯亭, 谭思宇

A novel method of improving coupling effiency of laser diode based on synthesized lens with graduaed index fiber

Yan Feng-Ping, Liu Peng, Tan Zhong-Wei, Tao Pei-Lin, Li Qi, Peng Wan-Jing, Feng Ting, Tan Si-Yu
PDF
导出引用
  • 提出一种利用组合透镜系统与渐变折射率光纤相结合改进激光 器管芯到单模尾纤耦合性能的新方法. 这种方法首先利用组合透镜系统对具有像 散的激光器输出光束进行整形, 然后采用渐变折射率光纤对整形后的光束进行聚焦处理, 并将处理后的的光束耦合进入普通单模光纤. 利用Jones矩阵理论分析表明, 采用这种方法可以得到86%的功率耦合效率, 1 dB插入损耗对应的渐变折射率光纤长度、 横向偏移和倾斜角容差分别为60 m, 30 m和2.4, 且结构简单, 便于操作, 特别适合于大功率激射的激光模块到单模光纤的耦合. 对于提高激光器输出功率, 改善光束质量具有重要意义.
    In this paper, a novel method of improving coupling effiency of laser diode to single mode fiber based on synthesized lens with graduaed index fiber is provided. The output beam with large astigmatism from laser diode is shaped and focused via synthesized lens and graduaed index fiber, and then couplied into single mode fiber. Analysis using Jones matrix theory indicates that the power coupler effect of 86% is obtained from output port of the single mode fiber. The tolerances for fiber length of graduaed index fiber, radial offset and tilt degree are 60 m, 30 m and 2.4 degree respectivily for 1 dB insert loss. This method can be used for improving the quality of optical beam and increasing output power for laser diode to single mode fiber with a large output optical power.
    • 基金项目: 国家自然科学基金 (批准号: 60877042, 61077069); 河北省高等学校技术研究指导项目(批准号:Z2011201) 和邢台市科学技术与发展计划(批准号:2011ZZ052-4)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 60877042, 61077069), the Science and Technology Research Project of Colleges and Universities in Hebei Province, China (Grant No. Z2011201), and the Science and Technology Development Project of Xingtai, China (Grant No. 2011ZZ052-4).
    [1]

    Ogura A, Shiraishi K 2002 J. Light. Tech. 20 49

    [2]

    Shiraishi K, Yoda H, Endo T 2004 IEEE Photo. Tech. Lett. 16 1104

    [3]

    He Y Z, Shi F G 2006 Opt. Commun. 260 127

    [4]

    Xiong D Y, Li Z F, Chen X S, Li N, Zhen H L, Lu W 2007 Acta Phys. Sin. 56 6648 (in Chinese) [熊大元, 李志锋, 陈效双, 李 宁, 甄红楼, 陆 卫 2007 56 6648]

    [5]

    Kishimoto R, Koyama M 1982 IEEE Trans. Microw. Theory Tech. 30 882

    [6]

    Ogura A, Kuchiki S, Shiraishi K 2001 IEEE Photo. Tech. Lett. 13 1191

    [7]

    Joyce W B, DeLoach B C 1984 Appl. Opt. 23 4187

    [8]

    Saruwatari M, Sugie T 1981 IEEE J. Quantum. Elect. 17 1021

    [9]

    Zhao G Y, Zhang Y X, Wang J Y, Jia J J 2010 Acta Phys. Sin. 59 1378 (in Chinese) [赵贵燕, 张逸新, 王建宇, 贾建军 2010 59 1378]

    [10]

    Jian X G, Wu F T 2008 Acta Phys. Sin. 57 4202 (in Chinese) [江新光, 吴逢铁 2008 57 4202]

    [11]

    Yeh S M, Huang S Y, Cheng W H 2005 J. Light. Tech. 23 1781

    [12]

    Bludau W, Rossberg R 1985 J. Light. Tech. 3 294

    [13]

    Yoda H, Shiraishi K 2001 J. Light. Tech. 19 1910

    [14]

    Yoda H, Sakurai T, Ogura A, Shiraishi K 2001 Proceedings of European Conference on Optical Communication (ECOC '01) Amsterdam, the Netherlands, September 30-October 4, 2001 p418

    [15]

    Kuwahara H, Sasaki M, Tokoyo N 1980 Appl. Opt. 19 2578

    [16]

    Hillerich B, Guttmann J 1989 J. Light. Tech. 7 99

    [17]

    Presby H M, Edwards C A 1992 IEEE Photo. Tech. Lett. 4 897

    [18]

    Kotsas A, Shiraz H G, Maclean T S M 1991 Opt. Quantum. Elect. 23 367

    [19]

    Yang H M, Huang S Y, Lee C W 2004 J. Light. Tech. 22 1395

    [20]

    Modavis R A, Webb T W 1995 IEEE Photo. Tech. Lett. 7 798

    [21]

    Li J L, Lü B D 2008 Acta Phys. Sin. 57 3006 (in Chinese) [李建龙, 吕百达 2008 57 3006]

    [22]

    Tang Z, Zhang R, Mondal S K 2001 Opt. Commun. 199 95

    [23]

    Thual M, Chanclou P, Gauttreau O 2003 Elect. Lett. 39 1504

    [24]

    Yeh S M, Lu Y K, Huang S Y 2004 J. Light. Tech. 22 1374

    [25]

    Lin I E 2005 Precision Eng. 29 146

  • [1]

    Ogura A, Shiraishi K 2002 J. Light. Tech. 20 49

    [2]

    Shiraishi K, Yoda H, Endo T 2004 IEEE Photo. Tech. Lett. 16 1104

    [3]

    He Y Z, Shi F G 2006 Opt. Commun. 260 127

    [4]

    Xiong D Y, Li Z F, Chen X S, Li N, Zhen H L, Lu W 2007 Acta Phys. Sin. 56 6648 (in Chinese) [熊大元, 李志锋, 陈效双, 李 宁, 甄红楼, 陆 卫 2007 56 6648]

    [5]

    Kishimoto R, Koyama M 1982 IEEE Trans. Microw. Theory Tech. 30 882

    [6]

    Ogura A, Kuchiki S, Shiraishi K 2001 IEEE Photo. Tech. Lett. 13 1191

    [7]

    Joyce W B, DeLoach B C 1984 Appl. Opt. 23 4187

    [8]

    Saruwatari M, Sugie T 1981 IEEE J. Quantum. Elect. 17 1021

    [9]

    Zhao G Y, Zhang Y X, Wang J Y, Jia J J 2010 Acta Phys. Sin. 59 1378 (in Chinese) [赵贵燕, 张逸新, 王建宇, 贾建军 2010 59 1378]

    [10]

    Jian X G, Wu F T 2008 Acta Phys. Sin. 57 4202 (in Chinese) [江新光, 吴逢铁 2008 57 4202]

    [11]

    Yeh S M, Huang S Y, Cheng W H 2005 J. Light. Tech. 23 1781

    [12]

    Bludau W, Rossberg R 1985 J. Light. Tech. 3 294

    [13]

    Yoda H, Shiraishi K 2001 J. Light. Tech. 19 1910

    [14]

    Yoda H, Sakurai T, Ogura A, Shiraishi K 2001 Proceedings of European Conference on Optical Communication (ECOC '01) Amsterdam, the Netherlands, September 30-October 4, 2001 p418

    [15]

    Kuwahara H, Sasaki M, Tokoyo N 1980 Appl. Opt. 19 2578

    [16]

    Hillerich B, Guttmann J 1989 J. Light. Tech. 7 99

    [17]

    Presby H M, Edwards C A 1992 IEEE Photo. Tech. Lett. 4 897

    [18]

    Kotsas A, Shiraz H G, Maclean T S M 1991 Opt. Quantum. Elect. 23 367

    [19]

    Yang H M, Huang S Y, Lee C W 2004 J. Light. Tech. 22 1395

    [20]

    Modavis R A, Webb T W 1995 IEEE Photo. Tech. Lett. 7 798

    [21]

    Li J L, Lü B D 2008 Acta Phys. Sin. 57 3006 (in Chinese) [李建龙, 吕百达 2008 57 3006]

    [22]

    Tang Z, Zhang R, Mondal S K 2001 Opt. Commun. 199 95

    [23]

    Thual M, Chanclou P, Gauttreau O 2003 Elect. Lett. 39 1504

    [24]

    Yeh S M, Lu Y K, Huang S Y 2004 J. Light. Tech. 22 1374

    [25]

    Lin I E 2005 Precision Eng. 29 146

  • [1] 尹培琪, 许博坪, 刘颖华, 王屹山, 赵卫, 汤洁. 高斯与平顶光束纳秒脉冲激光物质蒸发烧蚀动力学仿真研究.  , 2024, 73(9): 095202. doi: 10.7498/aps.73.20231625
    [2] 陈云天, 王经纬, 陈伟锦, 徐竞. 互易波导模式耦合理论.  , 2020, 69(15): 154206. doi: 10.7498/aps.69.20200194
    [3] 王栋, 许军, 陈溢杭. 介电常数近零模式与表面等离激元模式耦合实现宽带光吸收.  , 2018, 67(20): 207301. doi: 10.7498/aps.67.20181106
    [4] 刘亚琴, 杨士莪, 张海刚, 王笑寒. 变声速弹性沉积层下压缩波与剪切波的耦合影响.  , 2018, 67(23): 234303. doi: 10.7498/aps.67.20181600
    [5] 张梅, 崔超, 马千里, 干宗良, 王俊. 基于符号化部分互信息熵的多参数生物电信号的耦合分析.  , 2013, 62(6): 068704. doi: 10.7498/aps.62.068704
    [6] 赵娜, 刘建设, 李铁夫, 陈炜. 超导量子比特的耦合研究进展.  , 2013, 62(1): 010301. doi: 10.7498/aps.62.010301
    [7] 陆大全. 强非局域非线性介质中的形变像散椭圆呼吸子.  , 2013, 62(14): 144209. doi: 10.7498/aps.62.144209
    [8] 聂涛, 刘伟强. 高超声速飞行器前缘流固耦合计算方法研究.  , 2012, 61(18): 184401. doi: 10.7498/aps.61.184401
    [9] 陈醒基, 田涛涛, 周振玮, 胡一博, 唐国宁. 通过被动介质耦合的两螺旋波的同步.  , 2012, 61(21): 210509. doi: 10.7498/aps.61.210509
    [10] 杨岳彬, 左文龙, 保延翔, 刘树郁, 李龙飞, 张进修, 熊小敏. 力学共振吸收谱探测耦合振动模式.  , 2012, 61(20): 200509. doi: 10.7498/aps.61.200509
    [11] 周振玮, 陈醒基, 田涛涛, 唐国宁. 耦合可激发介质中螺旋波的控制研究.  , 2012, 61(21): 210506. doi: 10.7498/aps.61.210506
    [12] 李群宏, 闫玉龙, 杨丹. 耦合电路系统的分岔研究.  , 2012, 61(20): 200505. doi: 10.7498/aps.61.200505
    [13] 邹建龙, 马西奎. 级联功率因数校正变换器的级间耦合非线性动力学行为分析.  , 2010, 59(6): 3794-3801. doi: 10.7498/aps.59.3794
    [14] 陈章耀, 毕勤胜. Jerk系统耦合的分岔和混沌行为.  , 2010, 59(11): 7669-7678. doi: 10.7498/aps.59.7669
    [15] 赵贵燕, 张逸新, 王建宇, 贾建军. 大气湍流像差散焦和像散与高斯涡旋光束焦面光强.  , 2010, 59(2): 1378-1384. doi: 10.7498/aps.59.1378
    [16] 刘勇. 耦合系统的混沌相位同步.  , 2009, 58(2): 749-755. doi: 10.7498/aps.58.749
    [17] 张琪昌, 田瑞兰, 王 炜. 一类机电耦合非线性动力系统的混沌动力学特征.  , 2008, 57(5): 2799-2804. doi: 10.7498/aps.57.2799
    [18] 李建龙, 吕百达. 基于自适应遗传算法部分相干光整形位相板的优化设计.  , 2008, 57(5): 3006-3010. doi: 10.7498/aps.57.3006
    [19] 江新光, 吴逢铁. 像散对轴棱锥衍射特性的影响与修正.  , 2008, 57(7): 4202-4207. doi: 10.7498/aps.57.4202
    [20] 刘敬伟, 陈少武, 余金中. 一种分析三维楔脊形光波导与光纤耦合的方法.  , 2005, 54(1): 6-11. doi: 10.7498/aps.54.6
计量
  • 文章访问数:  7173
  • PDF下载量:  531
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-12-05
  • 修回日期:  2012-02-16
  • 刊出日期:  2012-08-05

/

返回文章
返回
Baidu
map