搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类非线性偏微分方程初边值问题的逐层优化算法

侯祥林 翟中海 郑莉 刘铁林

引用本文:
Citation:

一类非线性偏微分方程初边值问题的逐层优化算法

侯祥林, 翟中海, 郑莉, 刘铁林

Layered optimization algorithm about a kind of nonlinear partial differential equation with initial-boundary value problem

Hou Xiang-Lin, Zhai Zhong-Hai, Zheng Li, Liu Tie-Lin
PDF
导出引用
  • 针对非线性偏微分方程初边值问题,基于差分法和动态设计变量优化算法原理, 以时间计算层上离散节点的未知函数值为设计变量,以离散节点的差分方程组构造程式化的目标函数, 提出了离散节点处未知函数值的逐层高精度优化算法.编制通用程序求解具体典型算例. 并通过与解析解对比,表明了求解方法的正确性和有效性,为广泛的工程应用提供条件.
    For non-linear partial differential equations with initial-boundary value problems, based on the difference method and the optimization method with dynamic design variables, using unknown function values on discrete node points on time layer as design variables, the difference equations sets of all the discrete node points are constructed as stylized objective function. A layered accurate optimization algorithm about computing unknown function value on discrete node point is proposed. Universal computing program is designed, and practical examples are analyzed. Through comparing computation results with exact results, the effectiveness and the feasibility of proposed method are verified. The method can provide the condition for engineering application.
    • 基金项目: 国家自然科学基金 (批准号:10972144)、辽宁省自然科学基金(批准号:201102181)和辽宁省教育厅 (批准号:L2010445)资助的课题.
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No.10972144), the Natural Science Foundation of Liaoning Province, China (Grant No. 201102181), and the Education Department of Liaoning Province, China (Grant No. L2010445).
    [1]

    Gu C H, Li D Q, Shen W X 1994 Appliced Partial Differential Equations (Beijing: Higher Education Press) pp161–192 (in Chinese) [谷超豪,李大潜,沈玮熙 1994 应用偏微分方程(北京:高等教育出版社) 第161-192页]

    [2]

    Liu S K, Liu S D 2000 Nolinear Equations in Physics (Beijing: Peking University Press) pp7–15 (in Chinese) [刘式适,刘式达 2000 物理学中的非线性方程 (北京:北京大学出版社)第7-15页]

    [3]

    Taogetusang, Sirendaoerji 2010 Acta Phys. Sin. 59 5194 (in Chinese) [套格图桑,斯仁道尔吉 2010 59 5194]

    [4]

    Sun Z Z 2005 Numerical Method about Partial Differential Equations (Beijing: Science Press)pp73–80, 112,131–135 (in Chinese) [孙志忠 2005 偏微分方程数值解法 (北京:科学出版社)第73-80,112,131-135页]

    [5]

    Lu J, Yan J R 2002 Acta Phys. Sin. 51 1428 (in Chinese) [卢竞,颜家壬 2002 51 1428]

    [6]

    Xie Y X, Tang J S 2004 Acta Phys. Sin. 53 2828 (in Chinese) [谢元喜,唐驾时 2004 53 2828]

    [7]

    Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A 372 417

    [8]

    Taogetusang, Sirendaoerji 2009 Acta Phys. Sin. 58 5887 (in Chinese) [套格图桑,斯仁道尔吉 2009 58 5887]

    [9]

    Mo J Q 2011 Acta Phys.Sin. 60 020202(in Chinese) [莫嘉琪 2011 60 020202]

    [10]

    Cheng X P, Lin J, Yao J M 2009 Chin. Phys. B 18 391

    [11]

    Li Y Z, Feng W G, Li K M, Lin C 2007 Chin. Phys. 16 2510

    [12]

    Zheng L C, Feng Z F, Zhang X X 2007 Acta Phys. Sin. 56 1550 (in Chinese) [郑连存,冯志丰,张欣欣 2007 56 1550]

    [13]

    Guo Y C 2007 Introduction about Partial Differential Equations (Beijing:Tsinghua University Press) pp186–226 (in Chinese) [郭玉翠 2007 非线性偏微分方程引论(北京: 清华大学出版社)第186-226页]

    [14]

    Ma W X, Gu X, Gao L 2009 Adv. Appl. Math. Mech. 1 573

    [15]

    Chen L J, Ma C F 2010 Chin. Phys. B 19 010504

    [16]

    Ma W X, Huang T W, Zhang Y 2010 Phys. Scr. 82 065003

    [17]

    Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)

    [18]

    Hietarinta J 2005 Phys. AUC 15 31

    [19]

    W X Ma, Fan E G 2011 Comput. Math. Appl. 61 950

    [20]

    Hou X L, Qian Y, Wu H T 2010 Acta Math. Eng. 27 663 (in Chinese) [侯祥林, 钱颖, 吴海涛 2010 工程数学学报 27 663]

    [21]

    Hou X L, Liu T L, Zhai Z H 2011 Acta Phys. Sin. 60 090202 (in Chinese) [侯祥林,刘铁林,翟中海 2011 60 090202]

    [22]

    Polyanin A D, Zaitsev V F 2004 Handbook of Nonlinear Partial Differential Equations (Boca Raton, London, NewYork: Chapman & Hall/CRC) pp1–2

  • [1]

    Gu C H, Li D Q, Shen W X 1994 Appliced Partial Differential Equations (Beijing: Higher Education Press) pp161–192 (in Chinese) [谷超豪,李大潜,沈玮熙 1994 应用偏微分方程(北京:高等教育出版社) 第161-192页]

    [2]

    Liu S K, Liu S D 2000 Nolinear Equations in Physics (Beijing: Peking University Press) pp7–15 (in Chinese) [刘式适,刘式达 2000 物理学中的非线性方程 (北京:北京大学出版社)第7-15页]

    [3]

    Taogetusang, Sirendaoerji 2010 Acta Phys. Sin. 59 5194 (in Chinese) [套格图桑,斯仁道尔吉 2010 59 5194]

    [4]

    Sun Z Z 2005 Numerical Method about Partial Differential Equations (Beijing: Science Press)pp73–80, 112,131–135 (in Chinese) [孙志忠 2005 偏微分方程数值解法 (北京:科学出版社)第73-80,112,131-135页]

    [5]

    Lu J, Yan J R 2002 Acta Phys. Sin. 51 1428 (in Chinese) [卢竞,颜家壬 2002 51 1428]

    [6]

    Xie Y X, Tang J S 2004 Acta Phys. Sin. 53 2828 (in Chinese) [谢元喜,唐驾时 2004 53 2828]

    [7]

    Wang M L, Li X Z, Zhang J L 2008 Phys. Lett. A 372 417

    [8]

    Taogetusang, Sirendaoerji 2009 Acta Phys. Sin. 58 5887 (in Chinese) [套格图桑,斯仁道尔吉 2009 58 5887]

    [9]

    Mo J Q 2011 Acta Phys.Sin. 60 020202(in Chinese) [莫嘉琪 2011 60 020202]

    [10]

    Cheng X P, Lin J, Yao J M 2009 Chin. Phys. B 18 391

    [11]

    Li Y Z, Feng W G, Li K M, Lin C 2007 Chin. Phys. 16 2510

    [12]

    Zheng L C, Feng Z F, Zhang X X 2007 Acta Phys. Sin. 56 1550 (in Chinese) [郑连存,冯志丰,张欣欣 2007 56 1550]

    [13]

    Guo Y C 2007 Introduction about Partial Differential Equations (Beijing:Tsinghua University Press) pp186–226 (in Chinese) [郭玉翠 2007 非线性偏微分方程引论(北京: 清华大学出版社)第186-226页]

    [14]

    Ma W X, Gu X, Gao L 2009 Adv. Appl. Math. Mech. 1 573

    [15]

    Chen L J, Ma C F 2010 Chin. Phys. B 19 010504

    [16]

    Ma W X, Huang T W, Zhang Y 2010 Phys. Scr. 82 065003

    [17]

    Hirota R 2004 The Direct Method in Soliton Theory (Cambridge: Cambridge University Press)

    [18]

    Hietarinta J 2005 Phys. AUC 15 31

    [19]

    W X Ma, Fan E G 2011 Comput. Math. Appl. 61 950

    [20]

    Hou X L, Qian Y, Wu H T 2010 Acta Math. Eng. 27 663 (in Chinese) [侯祥林, 钱颖, 吴海涛 2010 工程数学学报 27 663]

    [21]

    Hou X L, Liu T L, Zhai Z H 2011 Acta Phys. Sin. 60 090202 (in Chinese) [侯祥林,刘铁林,翟中海 2011 60 090202]

    [22]

    Polyanin A D, Zaitsev V F 2004 Handbook of Nonlinear Partial Differential Equations (Boca Raton, London, NewYork: Chapman & Hall/CRC) pp1–2

  • [1] 王佳强, 吴志芳, 冯素春. 正常色散高非线性石英光纤优化设计及平坦光频率梳产生.  , 2022, 71(23): 234209. doi: 10.7498/aps.71.20221115
    [2] 姜贝贝, 王清, 董闯. 基于固溶体短程序结构的团簇式合金成分设计方法.  , 2017, 66(2): 026102. doi: 10.7498/aps.66.026102
    [3] 黄亮, 李建远. 基于单粒子模型与偏微分方程的锂离子电池建模与故障监测.  , 2015, 64(10): 108202. doi: 10.7498/aps.64.108202
    [4] 苏道毕力格, 王晓民, 乌云莫日根. 对称分类在非线性偏微分方程组边值问题中的应用.  , 2014, 63(4): 040201. doi: 10.7498/aps.63.040201
    [5] 陈再高, 王建国, 王玥, 乔海亮, 郭伟杰, 张殿辉. 基于粒子模拟和并行遗传算法的高功率微波源优化设计.  , 2013, 62(16): 168402. doi: 10.7498/aps.62.168402
    [6] 何郁波, 林晓艳, 董晓亮. 应用格子Boltzmann模型模拟一类二维偏微分方程.  , 2013, 62(19): 194701. doi: 10.7498/aps.62.194701
    [7] 张亚妮. 低损耗低非线性高负色散光子晶体光纤的优化设计.  , 2012, 61(8): 084213. doi: 10.7498/aps.61.084213
    [8] 高莹莹, 何枫, 沈孟育. 非定常动态演化伴随优化设计方法.  , 2012, 61(20): 200206. doi: 10.7498/aps.61.200206
    [9] 侯祥林, 郑夕健, 张良, 刘铁林. 薄板弯曲大变形高阶非线性偏微分方程推导与优化算法研究.  , 2012, 61(18): 180201. doi: 10.7498/aps.61.180201
    [10] 侯祥林, 刘铁林, 翟中海. 非线性偏微分方程边值问题的优化算法研究与应用.  , 2011, 60(9): 090202. doi: 10.7498/aps.60.090202
    [11] 套格图桑, 斯仁道尔吉. 用Riccati方程构造非线性差分微分方程新的精确解.  , 2009, 58(9): 5894-5902. doi: 10.7498/aps.58.5894
    [12] 王旦霞, 张建文, 吴润衡. 弹性矩形板方程在非线性边界条件下整体解的存在唯一性.  , 2008, 57(11): 6741-6750. doi: 10.7498/aps.57.6741
    [13] 龚春娟, 胡雄伟. 遗传算法优化设计三角晶格光子晶体.  , 2007, 56(2): 927-932. doi: 10.7498/aps.56.927
    [14] 郑连存, 冯志丰, 张欣欣. 一类非线性微分方程的近似解析解.  , 2007, 56(3): 1549-1554. doi: 10.7498/aps.56.1549
    [15] 谢元喜, 唐驾时. 对“求一类非线性偏微分方程解析解的一种简洁方法”一文的一点注记.  , 2005, 54(3): 1036-1038. doi: 10.7498/aps.54.1036
    [16] 谢元喜, 唐驾时. 求一类非线性偏微分方程解析解的一种简洁方法.  , 2004, 53(9): 2828-2830. doi: 10.7498/aps.53.2828
    [17] 卢竞, 颜家壬. 非线性偏微分方程的多孤子解.  , 2002, 51(7): 1428-1433. doi: 10.7498/aps.51.1428
    [18] 李志斌, 姚若侠. 非线性耦合微分方程组的精确解析解.  , 2001, 50(11): 2062-2067. doi: 10.7498/aps.50.2062
    [19] 钱祖文. 非线性声学谐波方程的特解及其在边值问题中的应用.  , 1993, 42(6): 949-953. doi: 10.7498/aps.42.949
    [20] 武宇. 边界形状的变化对偏微分方程本征值的影响.  , 1963, 19(8): 538-540. doi: 10.7498/aps.19.538
计量
  • 文章访问数:  7221
  • PDF下载量:  651
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-02-10
  • 修回日期:  2011-03-27
  • 刊出日期:  2012-01-05

/

返回文章
返回
Baidu
map