搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

分子XH(X=O, S, Se和 Te)中的正电子能级与正电子原子

朱正和 付依备

引用本文:
Citation:

分子XH(X=O, S, Se和 Te)中的正电子能级与正电子原子

朱正和, 付依备

The energy levels of positron under molecules XH(X=O, S, Se and Te)and positronium

Fu Yi-Bei, Zhu Zheng-He
PDF
导出引用
  • 基于全对称群的Dirac方程, 研究当存在核场时的正电子能级及其与核场的关系, 即计算在分子OH, SH, SeH和 TeH的核场下的正电子能级. 这时正电子的能量约为 e+=-1.022 MeV. 对于低能级, 当核场强增大时, 其能量有所升高, 而对较高能级, 核场强增大时, 其能量无明显变化. 正负电子的湮没过程为三光子湮没过程(the three-photon annihilation). 而当生成e+- e-<
    The present work devotes to the energy levels of positron under molecules XH(X=O, S, Se and Te)and the relations with nuclear field using Dirac equation based on the full symmetry group. Under these nuclear fields, the energy of positron is about e+=-1.022 MeV. For the lower energy level, the energy of positron is increased with nuclear field; for the higher energy level, the energy of positron is nearly invariant with nuclear field. In this case, it is the three-photon annihilation. The formation of the positronium is in orthopositronium 3S, excited state, followed the conservation of charge parity.
    [1]

    Landu L D, Lifshitz FM 1997 Quantum Mechanics, Butterworth

    [2]

    Luding W, Falter C 1996 Symmetries in Physics (Berlin:Springer-Verlag Heidelberg)

    [3]

    Tinkham M 1964 Group Theory and Quantum Mechanics. (New York; McGraw-Hill)

    [4]

    Berengut J C, Flambaum V V, Kozlov M G 2006 Physcal Review A 73 012504

    [5]

    Animalu A O E 1977 Intermediate Quantum Theory of Crystalline Solids, Prentice-Hall, INC.

    [6]

    Seeger A 1972 Physics Lett. A 40 135

    [7]

    Luiz Guilherme M de Macedo, Julio R Sambrano, Aguinaldo R de Souza, Antonio Carlos Borin 2007 Chem. Phys. Lett. 440 376

    [8]

    Bieron J, Fischer C F, Indelicato P, Jonsson P, pyykko P 2009 Phys. Rev. A 79 052502

    [9]

    Saue T, Helgaker T 2002 J. Comput. Chem. 23 814

    [10]

    Zhu Z H 2007 Atomic and Molecular Reaction Statics (Beijing: Science Press) (in Chinese) [朱正和 2007 原子分子反应静力学(北京:科学出版社)]

    [11]

    Cornwell J F 1994 Group Theory in Physics (London: Academic Press)

    [12]

    Saue T, Jensen H J Aa 1999 J. Chem. Phys. 111 6211

    [13]

    Saue T, Jensen H J Aa 2003 J. Chem. Phys. 118 5

    [14]

    Fleig T, Visscher L 2005 Chemical Physics 311 113

    [15]

    Charlie H 1976 Introduction to Mathematical Physics (Prentice_Hall, INC.Engleewood Cliffs, New Jersey)

    [16]

    Jensen H J A, Saue T, Visscher L, DIRAC08

    [17]

    Saue T, Helgaker T 2002 J. Comput. Chem. 23 814

    [18]

    Akinori Igarashi, Mineo Kimura, Isao Shimamura 2002 Phys. Rev. Lett. 12 123201

    [19]

    Ryzhikh G G, Mitroy J 2000 J. Phys. B 33 2229

    [20]

    Ivanov I A, Mitroy J 2000 J. Phys. B 33 L831

    [21]

    West R N 1974 Positron Studies of Condensed Matter Taylor and Francis Lid.

    [22]

    Jean Y C, Mallon P E, Schrader D M 2003 Principles and Applications of Positron and Positronium Chemistry, World Scientific

    [23]

    Johson C S, Pedersen L G 1986 Problems and Solutions in Quantum Chemistry and Physics, Dover Publication, Inc., New York

    [24]

    Dicke R H, Wittke J P 1980 Introducation to Quantum Mechanics, Addison-Wesley Publishing Company, INC.

    [25]

    Berestetskii V B, Lifshitz, E M, Pitaevskii LP 1994 RelativisticQuantumTheory, oxford:Pergamon,

    [26]

    Al-Ramadhan A H, Gidley D W 1994 Phys. Rev. Lett. 72 1632

    [27]

    Chen X L, Zhang J, Du H J, Zhou X Y, Ye B J 2010 Acta Phys. Sin. 59 0603 (in Chinese) [陈祥磊、张 杰、杜淮江、周先意、叶邦角 2010 59 0603]

    [28]

    Zhang H J, Wang D, Chen Z Q, Wang S J, Xu Y M, Luo X H 2010 Acta Phys. Sin. 59 7333 (in Chinese) [张宏俊、王 栋、陈志权、王少阶、徐友明、罗锡辉 2010 59 7333]

    [29]

    Zhou K, Li H, Wang Z 2010 Acta Phys. Sin. 59 (in Chinese) [周 凯、李 辉、王 柱 2010 59 5116]

  • [1]

    Landu L D, Lifshitz FM 1997 Quantum Mechanics, Butterworth

    [2]

    Luding W, Falter C 1996 Symmetries in Physics (Berlin:Springer-Verlag Heidelberg)

    [3]

    Tinkham M 1964 Group Theory and Quantum Mechanics. (New York; McGraw-Hill)

    [4]

    Berengut J C, Flambaum V V, Kozlov M G 2006 Physcal Review A 73 012504

    [5]

    Animalu A O E 1977 Intermediate Quantum Theory of Crystalline Solids, Prentice-Hall, INC.

    [6]

    Seeger A 1972 Physics Lett. A 40 135

    [7]

    Luiz Guilherme M de Macedo, Julio R Sambrano, Aguinaldo R de Souza, Antonio Carlos Borin 2007 Chem. Phys. Lett. 440 376

    [8]

    Bieron J, Fischer C F, Indelicato P, Jonsson P, pyykko P 2009 Phys. Rev. A 79 052502

    [9]

    Saue T, Helgaker T 2002 J. Comput. Chem. 23 814

    [10]

    Zhu Z H 2007 Atomic and Molecular Reaction Statics (Beijing: Science Press) (in Chinese) [朱正和 2007 原子分子反应静力学(北京:科学出版社)]

    [11]

    Cornwell J F 1994 Group Theory in Physics (London: Academic Press)

    [12]

    Saue T, Jensen H J Aa 1999 J. Chem. Phys. 111 6211

    [13]

    Saue T, Jensen H J Aa 2003 J. Chem. Phys. 118 5

    [14]

    Fleig T, Visscher L 2005 Chemical Physics 311 113

    [15]

    Charlie H 1976 Introduction to Mathematical Physics (Prentice_Hall, INC.Engleewood Cliffs, New Jersey)

    [16]

    Jensen H J A, Saue T, Visscher L, DIRAC08

    [17]

    Saue T, Helgaker T 2002 J. Comput. Chem. 23 814

    [18]

    Akinori Igarashi, Mineo Kimura, Isao Shimamura 2002 Phys. Rev. Lett. 12 123201

    [19]

    Ryzhikh G G, Mitroy J 2000 J. Phys. B 33 2229

    [20]

    Ivanov I A, Mitroy J 2000 J. Phys. B 33 L831

    [21]

    West R N 1974 Positron Studies of Condensed Matter Taylor and Francis Lid.

    [22]

    Jean Y C, Mallon P E, Schrader D M 2003 Principles and Applications of Positron and Positronium Chemistry, World Scientific

    [23]

    Johson C S, Pedersen L G 1986 Problems and Solutions in Quantum Chemistry and Physics, Dover Publication, Inc., New York

    [24]

    Dicke R H, Wittke J P 1980 Introducation to Quantum Mechanics, Addison-Wesley Publishing Company, INC.

    [25]

    Berestetskii V B, Lifshitz, E M, Pitaevskii LP 1994 RelativisticQuantumTheory, oxford:Pergamon,

    [26]

    Al-Ramadhan A H, Gidley D W 1994 Phys. Rev. Lett. 72 1632

    [27]

    Chen X L, Zhang J, Du H J, Zhou X Y, Ye B J 2010 Acta Phys. Sin. 59 0603 (in Chinese) [陈祥磊、张 杰、杜淮江、周先意、叶邦角 2010 59 0603]

    [28]

    Zhang H J, Wang D, Chen Z Q, Wang S J, Xu Y M, Luo X H 2010 Acta Phys. Sin. 59 7333 (in Chinese) [张宏俊、王 栋、陈志权、王少阶、徐友明、罗锡辉 2010 59 7333]

    [29]

    Zhou K, Li H, Wang Z 2010 Acta Phys. Sin. 59 (in Chinese) [周 凯、李 辉、王 柱 2010 59 5116]

  • [1] 高洁, 张民仓. 包含非中心电耦极矩的环状非谐振子势场赝自旋对称性的三对角化表示.  , 2016, 65(2): 020301. doi: 10.7498/aps.65.020301
    [2] 朱正和, 蒙大桥. 锕系元素钍到锿的5f电子效应.  , 2011, 60(4): 040301. doi: 10.7498/aps.60.040301
    [3] 胥建卫, 王顺金. 电子的相对论平均场理论与一阶、二阶Rashba效应.  , 2009, 58(7): 4878-4882. doi: 10.7498/aps.58.4878
    [4] 杨 波. 直线加速Kinnersley黑洞中Dirac粒子的热辐射.  , 2008, 57(2): 1278-1284. doi: 10.7498/aps.57.1278
    [5] 张民仓, 王振邦. 一类环状非球谐振子势场中相对论粒子的束缚态解.  , 2007, 56(7): 3688-3692. doi: 10.7498/aps.56.3688
    [6] 曹江陵. 任意加速带电动态黑洞中Dirac粒子的Hawking辐射.  , 2006, 55(6): 2682-2686. doi: 10.7498/aps.55.2682
    [7] 张民仓, 王振邦. 第二类P?schl-Teller势场中相对论粒子的束缚态.  , 2006, 55(2): 525-528. doi: 10.7498/aps.55.525
    [8] 张民仓, 王振邦. Manning-Rosen标量势与矢量势的Klein-Gordon方程和Dirac方程的束缚态.  , 2006, 55(2): 521-524. doi: 10.7498/aps.55.521
    [9] 张民仓, 王振邦. Makarov势的Dirac方程的束缚态解.  , 2006, 55(12): 6229-6233. doi: 10.7498/aps.55.6229
    [10] 李 宁, 鞠国兴, 任中洲. 一类相对论性非球谐振子系统的束缚态.  , 2005, 54(6): 2520-2523. doi: 10.7498/aps.54.2520
    [11] 陈 刚. Rosen-Morse势阱中相对论粒子的束缚态.  , 2004, 53(3): 684-687. doi: 10.7498/aps.53.684
    [12] 陈 刚. 具有Wood-Saxon势的Dirac方程的束缚态.  , 2004, 53(3): 680-683. doi: 10.7498/aps.53.680
    [13] 张靖仪. 一般球对称带电蒸发黑洞Dirac场的熵.  , 2003, 52(9): 2354-2358. doi: 10.7498/aps.52.2354
    [14] 张靖仪, 赵 峥. 电磁直线加速动态黑洞时空中Dirac粒子的Hawking辐射.  , 2003, 52(8): 2096-2101. doi: 10.7498/aps.52.2096
    [15] 陈 刚, 楼智美. 无反射势阱中相对论粒子的束缚态.  , 2003, 52(5): 1071-1074. doi: 10.7498/aps.52.1071
    [16] 陈 刚, 楼智美. 四参数双原子分子势阱中相对论粒子的束缚态.  , 2003, 52(5): 1075-1078. doi: 10.7498/aps.52.1075
    [17] 张靖仪, 赵峥. 直线加速动态黑洞Dirac场的熵.  , 2002, 51(10): 2399-2406. doi: 10.7498/aps.51.2399
    [18] 冉扬强, 薛立徽, 胡嗣柱. 具有一维Coulomb型对称势Dirac方程的精确解.  , 2002, 51(11): 2435-2439. doi: 10.7498/aps.51.2435
    [19] 郭建友. tan~2(πηr)型势阱中相对论粒子的束缚态.  , 2002, 51(7): 1453-1457. doi: 10.7498/aps.51.1453
    [20] 陈刚. 具有P?schl-Teller型标量势与矢量势的Klein-Gordon方程和Dirac方程的束缚态.  , 2001, 50(9): 1651-1653. doi: 10.7498/aps.50.1651
计量
  • 文章访问数:  9080
  • PDF下载量:  776
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-07-21
  • 修回日期:  2010-10-28
  • 刊出日期:  2011-02-05

/

返回文章
返回
Baidu
map