搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一维介观环中持续电流的电子-声子相互作用非经典效应

罗质华 梁国栋

引用本文:
Citation:

一维介观环中持续电流的电子-声子相互作用非经典效应

罗质华, 梁国栋

Non-classical state effect on the persistent current in one-dimensional mesoscopic ring with electron-phonon interaction

Liang Guo-Dong, Luo Zhi-Hua
PDF
导出引用
  • 基于声子相干态功效和计及声子压缩态非经典效应,研究了电子-磁振子和电子-声子相互作用对一维介观环持续电流的影响. 与自由环比较,由于电子-磁振子相互作用,持续电流的振幅呈现指数减小. 对于正常态电子,电子-声子相互作用导致持续电流以Debye-Waller(D-W)因子衰减.但是计入跳步电子-单声子相干态关联效应导致系统本征态能量大幅度下降,从而持续电流In有大幅度增加.另一方面计入双声子相干态行为,由于声子压缩态效应压缩电子-相干(态)声子弹性散射行为,导致电子绕环运
    Based on the efficacy of the phonon coherent state and with consideration of the non-classical effect of the squeezed state of phonon, the influence of the electron-magnon interaction and the electron-phonon interaction on the persistent current in one-dimensional mesoscopic ring is studied. Compared with the free ring, our study shows that in one-dimensional mesoscopic ring, the amplitude of the persistent current exponentially diminishes due to the electron-magnon interaction. For the normal state electron, the interaction of the electron-phonon causes the persistent current to weakendce to the Debye-Waller effect. However, taking the correlation between the hopping electron states and the one-phonon coherent states into the equation, the ground energy of the mesoscopic system is declined in a large scale. In result, the persistent current In is increased substantially. On the other hand, taking the behavior of the two-phonon coherent state into account, as the effect of the squeezed states of phonons maintains the phase coherence of electrons, so the Debye-Waller attenuation is weakened effectively. Especially, when the squeezed angle is larger, because of the non-adiabatic correlation between the squeezed-phonon states and the coherent states of phonon, it causes a significant decline in the ground state energy and a significant increase in the squeezed angle, thus persistent current has a even more significant increase. It should be pointed out, that the persistent current shows period oscillation as the external magnetic flux changes. Even the external magnetic flux Φem=0, still the persistent current of the intrinsic has I ~ n≠0. The system continuoues to support the equilibrium spin and charge flow, the external magnetic flux only plays the role of an adiabatic parameter.
    • 基金项目: 国家自然科学基金(批准号: 10574163)资助的课题.
    [1]

    Buttiker M, Imry Y, Landauer R 1983 Phys. Lett. A 96 365

    [2]
    [3]

    Chandrasekhar V, Webb R A, Brady M J, Ketchen M B, Gailagher W J, Kleinsasser A 1991 Phys. Rev. Lett. 67 3578

    [4]

    55 4287 (in Chinese) [谌雄文、 贺达江、吴绍全、宋克慧 2006 55 4287] [21] Dajkal J,Szopal M, Voardas, Zipperl 2004 Phys. Rev. B 69 45305

    [5]

    Cheung H F, Gefen Y, Riedel E K, Shih W H 1988 Phys. Rev. B 37 6050

    [6]

    Ambegaoker V, Eckern U 1990 Phys. Lett. 65 381

    [7]

    Altshuler B L, Gelfan Y, Imry Y 1991 Phys. Rev. Lett. 66 88

    [8]

    Bouzerar G, Poilblanc D, Monlambaux G 1994 Phys. Rev. B 49 8258

    [9]

    Lévy L P, Dolan G, Dansmuir J, Bouchait H 1990 Phys. Rev. Lett. 64 2074

    [10]

    Mailly D, Chapelier C, Benoid A 1993 Phys. Rev. Lett. 70 2120

    [11]

    Grüner G 1994 Rev. Mod. Phys. 66 1

    [12]

    Ye J F, Ye H, Ding G H 2003 Acta Phys. Sin. 52 468 (in Chinese) [叶剑斐、 叶 辉、 丁国辉 2003年 52 468]

    [13]

    Giamarchi T, Shastry B S 1995 Phys. Rev. B51 10915

    [14]

    Wang J, Ma Z S 1995 Phys. Rev. B52 14892

    [15]

    Liang S D,Bai Y H, Beng B 2006 Phys. Rev. B 74 113304

    [16]

    Citro R,Romeo F 2007 Phys. Rev. B 75 73306

    [17]

    Sun Q F, Xie X C, Wang J 2007 Phys. Rev. Lett. 98 196801

    [18]

    Niliionl J, Hans-Peter Eckler, Johanness-onr 2007 Phys. Rev. B 76 73408

    [19]

    Zhao H K 2005 Phys. Lett. A 342 468

    [20]

    Liang F Y, Li H M, Li Y J 2006 Acta Phys. Sin. 55 830 (in Chinese) [梁芳营、 李汉明、 李英骏 2006 年 55 830]

    [21]

    Wu S Q, He Z, Yan, C H, Chen X W, Sun W L 2006 Acta Phys. Sin. 55 1413 (in Chinese) [吴绍全、 何 忠、 阎从华、 谌雄文、 孙威立 2006 年 55 1413]

    [22]

    Chen X W, He D J, Wu S Q, Song K H 2006 Acta Phys. Sin.

    [23]

    Sheng J S, Kai Chang 2006 Phys. Rev. B 74 235315

    [24]

    Wu J N, Chang M C 2005 Phys. Rev. B 72 172405

    [25]

    Ji Y H, liu Y M, Xin J Z, Xie F S, Lei M S 2004 Acta Phys. Sin. 53 1207 (in Chinese) [嵇英华、 刘咏梅、 辛建之、 谢芳森、 雷敏生 2004 53 1027]

    [26]

    Wu S Q, Sun W L, Yu W L, Wang S J 2005 Acta Phys. Sin. 54 2910 (in Chinese) [吴绍全、 孙威立、 余万伦、 王顺金 2005 54 2910]

    [27]

    Wu Hong 2008 Chin. Phys. B 17 3026

    [28]

    Liu P, Xiong S J 2009 Chin. Phys. B 18 5414

    [29]

    Xu N, Ding J W, Ma M M, Tang X 2010 Chin. Phys. B 19 016101

    [30]

    Ma M M, Ding J W, Chen H B, Xu N 2009 Acta Phys. Sin. 58 2726 (in Chinese)[马明明、 丁建文、陈宏波、徐 宁2009 58 2726]

    [31]

    Xu N, Ding J W, Chen H B, Ma M M 2009 Chine. Phys. B 18 2030

    [32]

    Hamutal B S, Ora Entin-Wohlman, Imryl Y 2009 Phys. Rev. B 80 02459

    [33]

    Bouchiat H 2008 Mesoscopics Phys. 1 7

    [34]

    Zelgak O, Murthy 2008 Phys. Rev. B 78 125305

    [35]

    Feilhauer J, Mo ko M 2008 Physica E 40 1582

    [36]

    Loss D, Goldbart P 1991 Phys. Rev. B 43 13762 Loss D, Goldbart P 1992 Phys. Rev. B 45 13544

    [37]

    Kusakabe K, Aoki H 1994 Phys. Rev. Lett. 72 144

    [38]

    Majernikava E, Koval J 1998 Physica 37 23

    [39]

    Ivanov V A, Zhuravlev M Ye, Murayama Y, Nakajima S 1996 JETP Lett. 64 148

    [40]

    Wu S S, Ma Z S 1996 Phys. Rev. B 53 16372

  • [1]

    Buttiker M, Imry Y, Landauer R 1983 Phys. Lett. A 96 365

    [2]
    [3]

    Chandrasekhar V, Webb R A, Brady M J, Ketchen M B, Gailagher W J, Kleinsasser A 1991 Phys. Rev. Lett. 67 3578

    [4]

    55 4287 (in Chinese) [谌雄文、 贺达江、吴绍全、宋克慧 2006 55 4287] [21] Dajkal J,Szopal M, Voardas, Zipperl 2004 Phys. Rev. B 69 45305

    [5]

    Cheung H F, Gefen Y, Riedel E K, Shih W H 1988 Phys. Rev. B 37 6050

    [6]

    Ambegaoker V, Eckern U 1990 Phys. Lett. 65 381

    [7]

    Altshuler B L, Gelfan Y, Imry Y 1991 Phys. Rev. Lett. 66 88

    [8]

    Bouzerar G, Poilblanc D, Monlambaux G 1994 Phys. Rev. B 49 8258

    [9]

    Lévy L P, Dolan G, Dansmuir J, Bouchait H 1990 Phys. Rev. Lett. 64 2074

    [10]

    Mailly D, Chapelier C, Benoid A 1993 Phys. Rev. Lett. 70 2120

    [11]

    Grüner G 1994 Rev. Mod. Phys. 66 1

    [12]

    Ye J F, Ye H, Ding G H 2003 Acta Phys. Sin. 52 468 (in Chinese) [叶剑斐、 叶 辉、 丁国辉 2003年 52 468]

    [13]

    Giamarchi T, Shastry B S 1995 Phys. Rev. B51 10915

    [14]

    Wang J, Ma Z S 1995 Phys. Rev. B52 14892

    [15]

    Liang S D,Bai Y H, Beng B 2006 Phys. Rev. B 74 113304

    [16]

    Citro R,Romeo F 2007 Phys. Rev. B 75 73306

    [17]

    Sun Q F, Xie X C, Wang J 2007 Phys. Rev. Lett. 98 196801

    [18]

    Niliionl J, Hans-Peter Eckler, Johanness-onr 2007 Phys. Rev. B 76 73408

    [19]

    Zhao H K 2005 Phys. Lett. A 342 468

    [20]

    Liang F Y, Li H M, Li Y J 2006 Acta Phys. Sin. 55 830 (in Chinese) [梁芳营、 李汉明、 李英骏 2006 年 55 830]

    [21]

    Wu S Q, He Z, Yan, C H, Chen X W, Sun W L 2006 Acta Phys. Sin. 55 1413 (in Chinese) [吴绍全、 何 忠、 阎从华、 谌雄文、 孙威立 2006 年 55 1413]

    [22]

    Chen X W, He D J, Wu S Q, Song K H 2006 Acta Phys. Sin.

    [23]

    Sheng J S, Kai Chang 2006 Phys. Rev. B 74 235315

    [24]

    Wu J N, Chang M C 2005 Phys. Rev. B 72 172405

    [25]

    Ji Y H, liu Y M, Xin J Z, Xie F S, Lei M S 2004 Acta Phys. Sin. 53 1207 (in Chinese) [嵇英华、 刘咏梅、 辛建之、 谢芳森、 雷敏生 2004 53 1027]

    [26]

    Wu S Q, Sun W L, Yu W L, Wang S J 2005 Acta Phys. Sin. 54 2910 (in Chinese) [吴绍全、 孙威立、 余万伦、 王顺金 2005 54 2910]

    [27]

    Wu Hong 2008 Chin. Phys. B 17 3026

    [28]

    Liu P, Xiong S J 2009 Chin. Phys. B 18 5414

    [29]

    Xu N, Ding J W, Ma M M, Tang X 2010 Chin. Phys. B 19 016101

    [30]

    Ma M M, Ding J W, Chen H B, Xu N 2009 Acta Phys. Sin. 58 2726 (in Chinese)[马明明、 丁建文、陈宏波、徐 宁2009 58 2726]

    [31]

    Xu N, Ding J W, Chen H B, Ma M M 2009 Chine. Phys. B 18 2030

    [32]

    Hamutal B S, Ora Entin-Wohlman, Imryl Y 2009 Phys. Rev. B 80 02459

    [33]

    Bouchiat H 2008 Mesoscopics Phys. 1 7

    [34]

    Zelgak O, Murthy 2008 Phys. Rev. B 78 125305

    [35]

    Feilhauer J, Mo ko M 2008 Physica E 40 1582

    [36]

    Loss D, Goldbart P 1991 Phys. Rev. B 43 13762 Loss D, Goldbart P 1992 Phys. Rev. B 45 13544

    [37]

    Kusakabe K, Aoki H 1994 Phys. Rev. Lett. 72 144

    [38]

    Majernikava E, Koval J 1998 Physica 37 23

    [39]

    Ivanov V A, Zhuravlev M Ye, Murayama Y, Nakajima S 1996 JETP Lett. 64 148

    [40]

    Wu S S, Ma Z S 1996 Phys. Rev. B 53 16372

  • [1] 代楠, 邓文基. 扶手椅型石墨烯介观环中的持续电流.  , 2015, 64(1): 017302. doi: 10.7498/aps.64.017302
    [2] 吴海娜, 孙雪, 公卫江, 易光宇. 电子-声子相互作用对平行双量子点体系热电效应的影响.  , 2015, 64(7): 077301. doi: 10.7498/aps.64.077301
    [3] 罗质华, 梁国栋. 带有电子-双声子相互作用的一维铁磁性介观环的非经典本征态和非经典本征持续电流.  , 2012, 61(5): 057303. doi: 10.7498/aps.61.057303
    [4] 杜坚, 王素新, 袁爱国. 特殊结构的多臂量子环的持续电流.  , 2010, 59(4): 2760-2766. doi: 10.7498/aps.59.2760
    [5] 杜坚, 王素新, 袁爱国. δ势垒对多臂量子环中持续电流的影响.  , 2010, 59(4): 2767-2774. doi: 10.7498/aps.59.2767
    [6] 杜坚, 王素新, 杨淑敏. 含双δ势垒三臂量子环的透射概率和持续电流.  , 2009, 58(11): 7926-7933. doi: 10.7498/aps.58.7926
    [7] 谌雄文, 谌宝菊, 施振刚, 宋克慧. 嵌入T型耦合双量子点介观A-B环系统的显著Fano 效应.  , 2009, 58(4): 2720-2725. doi: 10.7498/aps.58.2720
    [8] 马明明, 陈宏波, 丁建文, 徐宁. 二维介观环中持续电流的梯度无序效应.  , 2009, 58(4): 2726-2730. doi: 10.7498/aps.58.2726
    [9] 赵凤岐, 周炳卿. 外电场作用下纤锌矿氮化物抛物量子阱中极化子能级.  , 2007, 56(8): 4856-4863. doi: 10.7498/aps.56.4856
    [10] 张红群, 刘韶军, 李融武. TTF-TCNQ的Peierls相变研究.  , 2005, 54(7): 3317-3320. doi: 10.7498/aps.54.3317
    [11] 吴绍全, 孙威立, 余万伦, 王顺金. 嵌入单量子点Aharonov-Bohm环中的近藤效应.  , 2005, 54(6): 2910-2917. doi: 10.7498/aps.54.2910
    [12] 张红群. 一维有机导体的Peierls相变研究.  , 2004, 53(4): 1162-1165. doi: 10.7498/aps.53.1162
    [13] 嵇英华, 刘咏梅, 辛建之, 谢芳森, 雷敏生. 磁场对介观耦合金属环中持续电流的影响.  , 2004, 53(4): 1207-1210. doi: 10.7498/aps.53.1207
    [14] 吴绍全, 谌雄文, 孙威 立, 王顺金. 嵌入耦合量子点的介观Aharonov-Bohm环内的持续电流.  , 2004, 53(7): 2336-2341. doi: 10.7498/aps.53.2336
    [15] 叶剑斐, 叶 飞, 丁国辉. 嵌入量子点的介观Aharonov-Bohm环的基态与持续电流.  , 2003, 52(2): 468-472. doi: 10.7498/aps.52.468
    [16] 陈丹平, 姜雄伟, 朱从善. Bi2O3-Li2O玻璃的热致变色研究.  , 2001, 50(8): 1501-1506. doi: 10.7498/aps.50.1501
    [17] 李 泌. 铁的原子间相互作用及声子谱.  , 2000, 49(9): 1692-1695. doi: 10.7498/aps.49.1692
    [18] 余超凡, 陈斌, 何国柱. 巡游电子系统中电子-声子相互作用对磁性激发的影响.  , 1994, 43(5): 839-845. doi: 10.7498/aps.43.839
    [19] 陈述春, 戴凤妹. 玻璃中Nd3+离子4F3/2态的多声子弛豫及电子-声子相互作用.  , 1981, 30(5): 624-632. doi: 10.7498/aps.30.624
    [20] 潘金声. 论三声子相互作用对色散的效果.  , 1965, 21(6): 1228-1241. doi: 10.7498/aps.21.1228
计量
  • 文章访问数:  9001
  • PDF下载量:  713
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-05-31
  • 修回日期:  2010-06-28
  • 刊出日期:  2011-03-15

/

返回文章
返回
Baidu
map