搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一类随机van der Pol系统的Hopf 分岔研究

马少娟

引用本文:
Citation:

一类随机van der Pol系统的Hopf 分岔研究

马少娟

Hopf bifurcation in a kind of stochastic van der Pol system

Ma Shao-Juan
PDF
导出引用
  • 研究了一类随机van der Pol 系统的Hopf分岔行为.首先根据Hilbert空间的正交展开理论,含有随机参数的van der Pol系统被约化为等价确定性系统,然后利用确定性分岔理论分析了等价系统的Hopf分岔,得出了随机van der Pol 系统的Hopf 分岔临界点,探究了随机参数对系统Hopf分岔的影响.最后利用数值模拟验证了理论分析结果.
    The Hopf bifurcation of van der Pol system with random parameter is studied. Firstly according to the orthogonal polynomial approximation in Hilbert space, the van der Pol system with random parameter can be reduced into the equivalent deterministic system. Then the Hopf bifurcation can be explored by the traditional methods in deterministic bifurcation theory. After the critical point of Hopf bifurcation in stochastic van der Pol system is obtained, the influence of the random parameter on Hopf bifurcation in stochastic van der Pol system is analyzed. At last we verified these results by numerical simulations.
    • 基金项目: 国家自然科学基金(批准号: 10872165,10972181,11002001), 国家民族事务委员会科研基金 (批准号08XBEO)及宁夏回族自治区高校科研基金(批准号: 2008JY007) 资助的课题.
    [1]

    Van der Pol B 1927 Phil. Mag. 7 3

    [2]

    Venkatasubramanian V 1994 IEEE Trans. Circuits System I 41 765

    [3]

    Buonomo A 1998 SIAM J. Appl. Math. 59 156

    [4]

    Qin Q, Gong D, Li R, Wen X 1989 Phys. Lett. A 141 412

    [5]

    Parlitz U, Lauterborn W 1987 Phys. Rev. A 36 1428

    [6]

    Mettin R, Parlitz U, Lauterborn W 1993 International Journal of Bifurcation and Chaos 36 1529

    [7]

    Xu J X, Jiang J 1996 Chaos, Solitons and Fractals 7 3

    [8]

    Liao X, Wong K, Wu Z 2001 Nonlinear Dynamics 26 23

    [9]

    Leung H K 1998 Physica A 254 146

    [10]

    Shinozuka M 1972 Journal of the Engineerring Mechanics Division ASCE 98 1433

    [11]

    Ghamem R, Spans P 1991 Stochastic finite element: a spectral approach. (Berlin: Springer)

    [12]

    Jensen H, Iwan W D 1992 ASCE. Eng. Mech. 118 1012

    [13]

    Xiu D B, Karniadakis G E 2002 Computer Methods in Applied Mechanics and Engineering 191 4927

    [14]

    Le Matre O P, Najm H N, Ghanem R G, Knio O M 2004 Journal of Computational Physics 197 502

    [15]

    Wan X L, Karniadakis G E 2005 Journal of Computational Physics 209 617

    [16]

    Pulch R 2009 Applied Numerical Mathematics 59 2610

    [17]

    Li J 1996 Stochastic Structural System-Analysis and Modeling (Beijing: Science Press)(in Chinese)[李 杰1996 随机结构系统-分析与建模 (北京: 科学出版社)]

    [18]

    Fang T, Leng X L, Song C Q 2003 J. Sound Vib. 226 198

    [19]

    Leng, X L, Wu C L, Ma X P, Meng G, Fang T 2005 Nonlinear Dynamics 42 185

    [20]

    Wu C L, Ma S J, Sun Z K, Fang T 2006 Acta Phys. Sin. 55 6253 (in Chinese)[吴存利、马少娟、孙中奎、方 同 2006 55 6253]

    [21]

    Ma S J, Xu W, Li W, Jin Y F 2005 Acta Phys. Sin. 54 3508 (in Chinese)[马少娟、徐 伟、李 伟、 靳艳飞 2005 54 3508]

    [22]

    Ma S J, Xu W, Jin Y F, Li W, Fang T 2007 Commumications in Nonlinear Science and Numerical Simulation 12 366

    [23]

    Ma S J, Xu W, Li W, Fang T 2006 Chin. Phys. 15 1231

    [24]

    Ma S J, Xu W, Li W 2006 Acta Phys. Sin. 55 4013 (in Chinese)[马少娟、徐 伟、李 伟 2006 55 4013]

    [25]

    Sun X J, Xu W, Ma S J 2006 Acta Phys. Sin. 55 610 (in Chinese) [孙小娟、徐 伟、马少娟 2006 55 610]

    [26]

    Xu W, Ma S J, Xie W X 2008 Chin. Phys. B 17 857

    [27]

    Liu B C 2004 Functional analysis (Beijing: Science Press) (in Chinese)[刘炳初 2004 泛函分析 (北京:科学出版社)]

    [28]

    Borwein P, Erdélyi T 1995 Polynomials and Polynomial Inequality(New York: Springer)

    [29]

    Liu S K, Liu S D 1988 Special Function (Beijing: China Meteorological Press) (in Chinese) [刘式适、刘式达 1988 (特殊函数, 北京:气象出版社)]

    [30]

    Kamerich E 1999 A Guide to Maple (New York: Springer).

    [31]

    Guckenheimer J, Holmes P J 1983 Nonlinear oscillators, Dynamical system and bifurcation of vector fields (New York: Spring-Verlag)

    [32]

    Hassard B, Kazarinoff N, Wan Y 1981 Theory and application of Hopf bifurcation (Cambridge: Cambridge University Press)

    [33]

    Shen J, Jing Z J 1993 Acta Mathematics Application Sinica 11 79

  • [1]

    Van der Pol B 1927 Phil. Mag. 7 3

    [2]

    Venkatasubramanian V 1994 IEEE Trans. Circuits System I 41 765

    [3]

    Buonomo A 1998 SIAM J. Appl. Math. 59 156

    [4]

    Qin Q, Gong D, Li R, Wen X 1989 Phys. Lett. A 141 412

    [5]

    Parlitz U, Lauterborn W 1987 Phys. Rev. A 36 1428

    [6]

    Mettin R, Parlitz U, Lauterborn W 1993 International Journal of Bifurcation and Chaos 36 1529

    [7]

    Xu J X, Jiang J 1996 Chaos, Solitons and Fractals 7 3

    [8]

    Liao X, Wong K, Wu Z 2001 Nonlinear Dynamics 26 23

    [9]

    Leung H K 1998 Physica A 254 146

    [10]

    Shinozuka M 1972 Journal of the Engineerring Mechanics Division ASCE 98 1433

    [11]

    Ghamem R, Spans P 1991 Stochastic finite element: a spectral approach. (Berlin: Springer)

    [12]

    Jensen H, Iwan W D 1992 ASCE. Eng. Mech. 118 1012

    [13]

    Xiu D B, Karniadakis G E 2002 Computer Methods in Applied Mechanics and Engineering 191 4927

    [14]

    Le Matre O P, Najm H N, Ghanem R G, Knio O M 2004 Journal of Computational Physics 197 502

    [15]

    Wan X L, Karniadakis G E 2005 Journal of Computational Physics 209 617

    [16]

    Pulch R 2009 Applied Numerical Mathematics 59 2610

    [17]

    Li J 1996 Stochastic Structural System-Analysis and Modeling (Beijing: Science Press)(in Chinese)[李 杰1996 随机结构系统-分析与建模 (北京: 科学出版社)]

    [18]

    Fang T, Leng X L, Song C Q 2003 J. Sound Vib. 226 198

    [19]

    Leng, X L, Wu C L, Ma X P, Meng G, Fang T 2005 Nonlinear Dynamics 42 185

    [20]

    Wu C L, Ma S J, Sun Z K, Fang T 2006 Acta Phys. Sin. 55 6253 (in Chinese)[吴存利、马少娟、孙中奎、方 同 2006 55 6253]

    [21]

    Ma S J, Xu W, Li W, Jin Y F 2005 Acta Phys. Sin. 54 3508 (in Chinese)[马少娟、徐 伟、李 伟、 靳艳飞 2005 54 3508]

    [22]

    Ma S J, Xu W, Jin Y F, Li W, Fang T 2007 Commumications in Nonlinear Science and Numerical Simulation 12 366

    [23]

    Ma S J, Xu W, Li W, Fang T 2006 Chin. Phys. 15 1231

    [24]

    Ma S J, Xu W, Li W 2006 Acta Phys. Sin. 55 4013 (in Chinese)[马少娟、徐 伟、李 伟 2006 55 4013]

    [25]

    Sun X J, Xu W, Ma S J 2006 Acta Phys. Sin. 55 610 (in Chinese) [孙小娟、徐 伟、马少娟 2006 55 610]

    [26]

    Xu W, Ma S J, Xie W X 2008 Chin. Phys. B 17 857

    [27]

    Liu B C 2004 Functional analysis (Beijing: Science Press) (in Chinese)[刘炳初 2004 泛函分析 (北京:科学出版社)]

    [28]

    Borwein P, Erdélyi T 1995 Polynomials and Polynomial Inequality(New York: Springer)

    [29]

    Liu S K, Liu S D 1988 Special Function (Beijing: China Meteorological Press) (in Chinese) [刘式适、刘式达 1988 (特殊函数, 北京:气象出版社)]

    [30]

    Kamerich E 1999 A Guide to Maple (New York: Springer).

    [31]

    Guckenheimer J, Holmes P J 1983 Nonlinear oscillators, Dynamical system and bifurcation of vector fields (New York: Spring-Verlag)

    [32]

    Hassard B, Kazarinoff N, Wan Y 1981 Theory and application of Hopf bifurcation (Cambridge: Cambridge University Press)

    [33]

    Shen J, Jing Z J 1993 Acta Mathematics Application Sinica 11 79

  • [1] 陆金波, 侯晓荣, 罗敏. 一类Hopf分岔系统的通用鲁棒稳定控制器设计方法.  , 2016, 65(6): 060502. doi: 10.7498/aps.65.060502
    [2] 张妩帆, 赵强. 太阳强迫厄尔尼诺/南方涛动充电振子模型的Hopf分岔与混沌.  , 2014, 63(21): 210201. doi: 10.7498/aps.63.210201
    [3] 张玲梅, 张建文, 吴润衡. 具有对应分段系统和指数系统的新混沌系统的Hopf分岔控制研究.  , 2014, 63(16): 160505. doi: 10.7498/aps.63.160505
    [4] 毕闯, 张千, 向勇, 王京梅. 二维正弦离散映射的分岔和吸引子.  , 2013, 62(24): 240503. doi: 10.7498/aps.62.240503
    [5] 李晓静, 陈绚青, 严静. 一类具时滞的厄尔尼诺-南方涛动充电-放电振子模型的Hopf分岔与周期解问题.  , 2013, 62(16): 160202. doi: 10.7498/aps.62.160202
    [6] 李绍龙, 张正娣, 吴天一, 毕勤胜. 广义BVP电路系统的振荡行为及其非光滑分岔机理.  , 2012, 61(6): 060504. doi: 10.7498/aps.61.060504
    [7] 崔岩, 刘素华, 葛晓陵. Langford系统Hopf分岔极限环幅值控制.  , 2012, 61(10): 100202. doi: 10.7498/aps.61.100202
    [8] 赵洪涌, 陈凌, 于小红. 一类惯性神经网络的分岔与控制.  , 2011, 60(7): 070202. doi: 10.7498/aps.60.070202
    [9] 马伟, 王明渝, 聂海龙. 单周期控制Boost变换器Hopf分岔控制及电路实现.  , 2011, 60(10): 100202. doi: 10.7498/aps.60.100202
    [10] 张立森, 蔡理, 冯朝文. 线性延时反馈Josephson结的Hopf分岔和混沌化.  , 2011, 60(6): 060306. doi: 10.7498/aps.60.060306
    [11] 张丽萍, 王惠南, 徐敏. 一个三时滞生物捕食被捕食系统分岔的混合控制.  , 2011, 60(1): 010506. doi: 10.7498/aps.60.010506
    [12] 吴志强, 孙立明. 基于Washout滤波器的Rössler系统Hopf分岔控制.  , 2011, 60(5): 050504. doi: 10.7498/aps.60.050504
    [13] 刘爽, 刘彬, 张业宽, 闻岩. 一类时滞非线性相对转动系统的Hopf分岔与周期解的稳定性.  , 2010, 59(1): 38-43. doi: 10.7498/aps.59.38
    [14] 刘爽, 刘浩然, 闻岩, 刘彬. 一类耦合非线性相对转动系统的Hopf分岔控制.  , 2010, 59(8): 5223-5228. doi: 10.7498/aps.59.5223
    [15] 韩修静, 江波, 毕勤胜. 快慢型超混沌Lorenz系统分析.  , 2009, 58(9): 6006-6015. doi: 10.7498/aps.58.6006
    [16] 刘爽, 刘彬, 时培明. 一类相对转动系统Hopf分岔的非线性反馈控制.  , 2009, 58(7): 4383-4389. doi: 10.7498/aps.58.4383
    [17] 王作雷. 一类简化Lang-Kobayashi方程的Hopf分岔及其稳定性.  , 2008, 57(8): 4771-4776. doi: 10.7498/aps.57.4771
    [18] 张 青, 王杰智, 陈增强, 袁著祉. 共轭Chen混沌系统的分岔分析及基于该系统的超混沌生成研究.  , 2008, 57(4): 2092-2099. doi: 10.7498/aps.57.2092
    [19] 刘素华, 唐驾时. 四维Qi系统零平衡点的Hopf分岔反控制.  , 2008, 57(10): 6162-6168. doi: 10.7498/aps.57.6162
    [20] 马少娟, 徐 伟, 李 伟, 靳艳飞. 基于Chebyshev多项式逼近的随机 van der Pol系统的倍周期分岔分析.  , 2005, 54(8): 3508-3515. doi: 10.7498/aps.54.3508
计量
  • 文章访问数:  9923
  • PDF下载量:  979
  • 被引次数: 0
出版历程
  • 收稿日期:  2009-12-18
  • 修回日期:  2010-04-20
  • 刊出日期:  2011-01-15

/

返回文章
返回
Baidu
map