-
基于Lyapunov稳定性理论,设计了一个简单的标量自适应控制器分别使具有确定和不确定参数的三维(3D)二次自治混沌系统实现反同步.此外,从驱动和响应系统间的时序列动态估计出所有不确定参数. 数值仿真表明该方法的有效性和实用性.
-
关键词:
- 反同步 /
- 3D二次自治混沌系统 /
- 标量控制器 /
- Lyapunov函数
Based on Lyapunov stability theory,a simple adaptive scalar controller was designed to realize the anti-synchronization of 3-D quadratic autonomous systems with known or unknown parameters. Furthermore,all the unknown parameters can be estimated dynamically from the time series of the drive and response systems. Numerical simulations show the effectiveness and feasibility of the proposed method.-
Keywords:
- anti-synchronization /
- 3-D quadratic autonomous chaos systems /
- scalar controller /
- Lyapunov function
[1] Pecora L M,Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Chen G R,Dong X 1998 From Chaos to Order:Methodologies,Perspectives,and Applications,(Singapore:World Scientific Pub. Co.)
[3] Li S,Xu w,Li R H,Li Y P 2006 Acta Phys. Sin. 55 5681 (in Chinese) [李 爽、徐 伟、李瑞红、李玉鹏 2006 55 5681]
[4] Li F,Hu A H,Xu Z Y 2006 Chin. Phys. 15 507
[5] Li R H,Xu W,Li S 2007 Chin. Phys. 16 1591
[6] Li X C,Xu W,Xiao Y Z 2008 Acta Phys. Sin. 57 1457 (in Chinese) [李秀春、徐 伟、肖玉柱 2008 57 1457]
[7] Liu W Q,Xiao J H,Qiao X L,Yang J Z 2006 Phys. Rev. E 73 057203
[8] Belykh V N,Chua L O 1992 Int. J. Bifur. Chaos 2 697
[9] Huygens C 1669 Philos. R. Soc. London 4 937
[10] Bennett M,Schatz M F,Rockwood H,Wiesenfeld K 2002 Proc. R. Soc. A 458 563
[11] Kim C M,Rim S H,Key W 2003 Phys. Lett. A 320 39
[12] Cao L Y,Lai Y C 1998 Phys. Rev. E 58 382
[13] Wang X Y,Wang M J 2007 Acta Phys. Sin. 56 6843 (in Chinese) [王兴元、王明军 2007 56 6843]
[14] Liu F C,Zang X F,Song J Q 2009 Acta Phys. Sin. 58 3765 (in Chinese) [刘福才、臧秀凤、宋佳秋 2009 58 3765]
[15] Li R H,Xu W,Li S 2009 Chaos,Solitons & Fractals 40 1288
[16] Al-Sawalha M M,Noorani M S M 2008 Chaos,Solitons & Fractals 42 170
[17] Wang L 2009 Chaos 19 013107
-
[1] Pecora L M,Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Chen G R,Dong X 1998 From Chaos to Order:Methodologies,Perspectives,and Applications,(Singapore:World Scientific Pub. Co.)
[3] Li S,Xu w,Li R H,Li Y P 2006 Acta Phys. Sin. 55 5681 (in Chinese) [李 爽、徐 伟、李瑞红、李玉鹏 2006 55 5681]
[4] Li F,Hu A H,Xu Z Y 2006 Chin. Phys. 15 507
[5] Li R H,Xu W,Li S 2007 Chin. Phys. 16 1591
[6] Li X C,Xu W,Xiao Y Z 2008 Acta Phys. Sin. 57 1457 (in Chinese) [李秀春、徐 伟、肖玉柱 2008 57 1457]
[7] Liu W Q,Xiao J H,Qiao X L,Yang J Z 2006 Phys. Rev. E 73 057203
[8] Belykh V N,Chua L O 1992 Int. J. Bifur. Chaos 2 697
[9] Huygens C 1669 Philos. R. Soc. London 4 937
[10] Bennett M,Schatz M F,Rockwood H,Wiesenfeld K 2002 Proc. R. Soc. A 458 563
[11] Kim C M,Rim S H,Key W 2003 Phys. Lett. A 320 39
[12] Cao L Y,Lai Y C 1998 Phys. Rev. E 58 382
[13] Wang X Y,Wang M J 2007 Acta Phys. Sin. 56 6843 (in Chinese) [王兴元、王明军 2007 56 6843]
[14] Liu F C,Zang X F,Song J Q 2009 Acta Phys. Sin. 58 3765 (in Chinese) [刘福才、臧秀凤、宋佳秋 2009 58 3765]
[15] Li R H,Xu W,Li S 2009 Chaos,Solitons & Fractals 40 1288
[16] Al-Sawalha M M,Noorani M S M 2008 Chaos,Solitons & Fractals 42 170
[17] Wang L 2009 Chaos 19 013107
计量
- 文章访问数: 8764
- PDF下载量: 831
- 被引次数: 0