-
利用砖墙方法和薄层方法计算了Gibbons-Maeda黑洞背景时空中标量场的统计力学熵.用砖墙方法求得的统计力学熵有两项:其中一项与Gibbons-Maeda黑洞视界面积成正比,并且当截断因子满足一定的关系时,熵为其视界面积的四分之一;另一项是对数发散项.利用薄层方法所求得的熵只有与Gibbons-Maeda黑洞视界面积成正比的项,对数发散项被自然消去.
-
关键词:
- 砖墙方法 /
- 薄层方法 /
- Gibbons-Maeda黑洞 /
- 统计力学熵
The statistical-mechanical entropy of scalar field is calculated by using brick wall method and thin film brick-wall method in Gibbons-Maeda black hole spacetime. The entropy obtained from brick-wall method has two terms. One term is proportional to the event horizon area, and the proportional coefficient is 1/4 when the cutoff factor satisfies a suitable condition. The other term is logarithmic-divergent. The entropy obtained from thin film brick-wall method has only one term which is proportional to the event horizon area, and the logarithmic divergence vanishes.-
Keywords:
- brick-wall method /
- thin film brick-wall method /
- Gibbons-Maeda black hole /
- statistical-mechanical entropy
[1] [1]Hawking S W 1975 Commun. Math. Phys 43 199
[2] [2]Bekenstein J D 1973 Phys. Rev. D 7 2333
[3] [3]G’t Hooft 1985 Nucl. Phys. B 256 727
[4] [4]Luo Z J, Zhu J Y 1999 Acta Phys. Sin. 48 395(in Chinese)[罗智坚、朱建阳 1999 48 395]
[5] [5]Liu W B, Zhao Z 2000 Journal of Beijing Normal University(Natural Science) 36 626 (in Chinese) [刘文彪、赵峥 2000北京师范大学学报36 626]
[6] [6]Zhao R, Zhang L C 2002 Acta Phys. Sin. 51 1167(in Chinese) [赵仁、张丽春 2002 51 1167]
[7] [7]Liu C Z, Li X, Zhao Z 2004 General Ralativity and Gravitation 36 1135
[8] [8]Ding C K, Jing J L 2007 Chin. Phys. 16 3610
[9] [9]Yang B 2008 Acta Phys. Sin. 57 2614(in Chinese)[杨波 2008 57 2614]
[10] ]Wang B B 2008 Chin. Phys. B 17 467[11]Liu C Z 2005 Acta Phys. Sin. 54 1977(in Chinese)[刘成周 2005 54 1977]
[11] ]Jing J L, Yan M L 2001 Phys. Rev. D 64 064015
[12] ]Jing J L, Yan M L 2001 Phys. Rev. D 63 084028
[13] ]Li X 2001 Phys. Rev. D 65 084005
[14] ]Wei Y H, Wang C H, Zhao Z 2002 Phys. Rev. D 65 124023
[15] ]Ghosh T, SenGupta S 2008 Phys. Rev. D 78 024045
[16] ]Li X, Zhao Z 2000 Phys. Rev. D 62 104001
[17] ]He F, Zhao Z, Kim S W 2001 Phys. Rev. D 64 044025
[18] ]Gao C J, Shen Y G 2002 Phys. Rev. D 65 084043
[19] ]G W Gibbons, K Maeda 1988 Nucl. Phys. B 298 741
-
[1] [1]Hawking S W 1975 Commun. Math. Phys 43 199
[2] [2]Bekenstein J D 1973 Phys. Rev. D 7 2333
[3] [3]G’t Hooft 1985 Nucl. Phys. B 256 727
[4] [4]Luo Z J, Zhu J Y 1999 Acta Phys. Sin. 48 395(in Chinese)[罗智坚、朱建阳 1999 48 395]
[5] [5]Liu W B, Zhao Z 2000 Journal of Beijing Normal University(Natural Science) 36 626 (in Chinese) [刘文彪、赵峥 2000北京师范大学学报36 626]
[6] [6]Zhao R, Zhang L C 2002 Acta Phys. Sin. 51 1167(in Chinese) [赵仁、张丽春 2002 51 1167]
[7] [7]Liu C Z, Li X, Zhao Z 2004 General Ralativity and Gravitation 36 1135
[8] [8]Ding C K, Jing J L 2007 Chin. Phys. 16 3610
[9] [9]Yang B 2008 Acta Phys. Sin. 57 2614(in Chinese)[杨波 2008 57 2614]
[10] ]Wang B B 2008 Chin. Phys. B 17 467[11]Liu C Z 2005 Acta Phys. Sin. 54 1977(in Chinese)[刘成周 2005 54 1977]
[11] ]Jing J L, Yan M L 2001 Phys. Rev. D 64 064015
[12] ]Jing J L, Yan M L 2001 Phys. Rev. D 63 084028
[13] ]Li X 2001 Phys. Rev. D 65 084005
[14] ]Wei Y H, Wang C H, Zhao Z 2002 Phys. Rev. D 65 124023
[15] ]Ghosh T, SenGupta S 2008 Phys. Rev. D 78 024045
[16] ]Li X, Zhao Z 2000 Phys. Rev. D 62 104001
[17] ]He F, Zhao Z, Kim S W 2001 Phys. Rev. D 64 044025
[18] ]Gao C J, Shen Y G 2002 Phys. Rev. D 65 084043
[19] ]G W Gibbons, K Maeda 1988 Nucl. Phys. B 298 741
计量
- 文章访问数: 8084
- PDF下载量: 610
- 被引次数: 0