-
采用全量子理论和数值计算方法, 研究了初始处于SU(2)相干态的双模腔场与一个Λ型三能级原子共振相互作用的光场非经典性质,讨论了在没有对原子进行态选择测量、 直接对原子进行态选择测量和应用经典微波场并对原子进行态选择测量的三种情况下,两个腔模总光子数、配分参量和耦合系数对光场非经典性质的影响.结果表明,增加两个腔模的总光子数M或对原子进行态选择测量,双模差压缩明显增强;减小配分参量和应用经典场并对原子进行态选择测量,a模光子的亚Poisson统计分布的平均程度变浅,而b模变深;两模间的反相关特征保持不变,增加M或直接对原子进行态选择测量,反相关平均程度变浅;直接对原子进行态选择测量,违背Cauchy-Schwartz不等式.Nonclassical properties of a two-mode field initially in an SU(2) coherent state resonantly interacting with a three-level Λ-type atom are investigated by means of the quantum theory and numerical calculations. The dependence of the nonclassical properties on the total photon number of the two-mode, the partition parameter and the coupling constant is discussed for three cases: (1) no state-selective atomic measurement; (2) direct state-selective atomic measurement; and (3) state-selective atomic measurement after the application of a classical field. The results indicate that when the total photon number of the two-mode is increased or the state-selective measurement is performed on the atom, the difference squeezing of two-mode is distinctly enhanced; and when the partition parameter is decreased or the state-selective measurement is performed on the atom after the application of a classical field, the average intensity of the sub-Poisson statistic distribution of mode a is reduced and that of mode b is enhanced; when the total photon number of the two modes is increased or the direct state-selective measurement is performed on the atom, the anti-correlation character between the two modes is preserved, but the average intensity of the anti-correlation is reduced; and when the direct state-selective measurement is performed on the atom, the Cauchy-Schwartz inequality is violated.
[1] [1]Christopher C G, Himel G 1997 Phys. Lett. A 229 17
[2] [2]Wu H Z, Su W J 2007 Chin. Phys. 16 106
[3] [3]Buzek V, Quang T 1989 J. Opt. Soc. Am. B 6 2447
[4] [4]Wodkiewicz K, Eberly J H 1985 J. Opt. Soc. Am. B 2 458
[5] [5]Deb B, Gangopadhyay G, Ray D S 1995 Phy. Rev. A 51 2651
[6] [6]Song K H 2000 Acta Opt. Sin. 20 51 (in Chinese)[宋克慧 2000 光学学报 20 51]
[7] [7]Zheng S B 2003 Chin. Phys. 12 977
[8] [8]Lu H, Peng J S, Wu M J 1995 Acta Opt. Sin. 15 1365 (in Chinese)[路洪、 彭金生、 吴美钧 1995 光学学报 15 1365]
[9] [9]Lai W K, Buzek V, Knight P L 1991 Phy. Rev. A 44 2003
[10] ]Tian Y H, Peng J S 2000 Acta Phys. Sin. 49 67 (in Chinese)[田永红、 彭金生 2000 49 67]
[11] ]Zhang L H, Li G X, Peng J S 2001 Acta Photo. Sin. 30 1425 (in Chinese) [张立辉、 李高翔、 彭金生 2001 光子学报 30 1425]
[12] ]Hu X P, Guo H 2009 Acta. Phys. Sin. 58 272 (in Chinese)[胡孝平、 郭红 2009 58 272]
[13] ]Zhang J S, Xu J B 2009 Chin. Phys. B 18 2288
[14] ]Guo G C, Zheng S B 1996 Phys. Lett. A 223 332
[15] ]Hillery M 1989 Phys. Rev. A 40 3147
[16] ]Shore B W, Knight P L 1993 J. Mod. Opt. 40 1195
[17] ]Lai W K, Buek V, Knight P L 1991 Phys. Rev. A 44 6043
[18] ]Reid M D, Walls D F 1986 Phys. Rev. A 34 1260
-
[1] [1]Christopher C G, Himel G 1997 Phys. Lett. A 229 17
[2] [2]Wu H Z, Su W J 2007 Chin. Phys. 16 106
[3] [3]Buzek V, Quang T 1989 J. Opt. Soc. Am. B 6 2447
[4] [4]Wodkiewicz K, Eberly J H 1985 J. Opt. Soc. Am. B 2 458
[5] [5]Deb B, Gangopadhyay G, Ray D S 1995 Phy. Rev. A 51 2651
[6] [6]Song K H 2000 Acta Opt. Sin. 20 51 (in Chinese)[宋克慧 2000 光学学报 20 51]
[7] [7]Zheng S B 2003 Chin. Phys. 12 977
[8] [8]Lu H, Peng J S, Wu M J 1995 Acta Opt. Sin. 15 1365 (in Chinese)[路洪、 彭金生、 吴美钧 1995 光学学报 15 1365]
[9] [9]Lai W K, Buzek V, Knight P L 1991 Phy. Rev. A 44 2003
[10] ]Tian Y H, Peng J S 2000 Acta Phys. Sin. 49 67 (in Chinese)[田永红、 彭金生 2000 49 67]
[11] ]Zhang L H, Li G X, Peng J S 2001 Acta Photo. Sin. 30 1425 (in Chinese) [张立辉、 李高翔、 彭金生 2001 光子学报 30 1425]
[12] ]Hu X P, Guo H 2009 Acta. Phys. Sin. 58 272 (in Chinese)[胡孝平、 郭红 2009 58 272]
[13] ]Zhang J S, Xu J B 2009 Chin. Phys. B 18 2288
[14] ]Guo G C, Zheng S B 1996 Phys. Lett. A 223 332
[15] ]Hillery M 1989 Phys. Rev. A 40 3147
[16] ]Shore B W, Knight P L 1993 J. Mod. Opt. 40 1195
[17] ]Lai W K, Buek V, Knight P L 1991 Phys. Rev. A 44 6043
[18] ]Reid M D, Walls D F 1986 Phys. Rev. A 34 1260
计量
- 文章访问数: 8273
- PDF下载量: 908
- 被引次数: 0