-
由扩展正则作用量导出了高阶微商奇异Lagrange量系统的扩展正则Noether恒等式.从广义约束Hamilton系统相空间中对称性分析,给出高阶微商系统Dirac猜想的一个反例. 用正则Noether定理、 正则Noether恒等式和扩展正则Noether恒等式说明在此反例中Dirac猜想失效, 讨论中没有将约束线性化.
-
关键词:
- 高阶微商系统 /
- 约束Hamilton系统 /
- 正则对称性 /
- Dirac猜想
The extended canonical Noether identities derived from an extended action in the phase space for a system with a higher-order singular Lagrangian are formulated.Based on the canonical symmetries of generalized constrained Hamiltonian systems, a counterexample to a conjecture of Dirac is given. Using the canonical first Noether theorem and canonical Noether identities and the extended canonical Noether identities, we have shown that Dirac's conjecture fails for a system with a higher-order singular Lagrangian in which there is no linearization of constraint in our treatment.-
Keywords:
- higher-order derivatives theories /
- generalized constrained Hamiltonian systems /
- canonical symmetries /
- Dirac's conjecture
计量
- 文章访问数: 6850
- PDF下载量: 502
- 被引次数: 0