搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

褶皱状单层GeSe各向异性的能带漏斗效应

刘俊杰 左慧玲 谭鑫 董健生

引用本文:
Citation:

褶皱状单层GeSe各向异性的能带漏斗效应

刘俊杰, 左慧玲, 谭鑫, 董健生

Anisotropic energy funneling effect in wrinkled monolayer GeSe

Liu JunJie, Zuo HuiLing, Tan Xin, Dong JianSheng
PDF
导出引用
  • 褶皱结构引起的周期性连续变化应变为调控二维材料电子和光电性质提供了重要手段.然而,关于褶皱状二维材料的形成机理及其对相关物性的调控研究仍缺乏理解.本文基于原子键弛豫理论和连续介质力学方法,系统研究了褶皱状单层GeSe能带结构随波长和位置的变化规律.结果表明,由于各向异性的力学性质和褶皱引起的周期性连续变化应变,褶皱状单层GeSe表现出各向异性的能带漏斗效应,激子会定向聚集在褶皱的谷区域,且聚集能力随着波长的减小而增强.此外,当波长减小至106nm,锯齿型褶皱状单层GeSe的能带漏斗会消失,而扶手椅型褶皱状单层GeSe的能带漏斗依然得以保持.这些结果为褶皱状单层GeSe在激子输运中的应用提供了理论基础,并为设计高性能基于二维材料的光电器件提供了新策略。
    Two-dimensional materials with tunable wrinkled structures opening up new avenue to modulate their electronic and optoelectronic properties. However, the formation mechanisms of wrinkles and their influences on the band structures and associated properties remains unclear. Here, we investigate the strain distributions, bandgap, and anisotropic energy funneling of wrinkled monolayer GeSe and their evolution with the wrinkle wavelength based on the atomic-bond-relaxation approach and continuum medium mechanics. We find that the top and valley regions of wrinkled monolayer GeSe exhibit tensile and compressive strains, respectively, and the strain increases with decreasing wrinkle wavelength. Moreover, the periodic undulation strain in the wrinkles can lead to continuously adjustable bandgaps and band edges in wrinkled monolayer GeSe. For zigzag wrinkled monolayer GeSe, when the wrinkle wavelength is large, the conduction band minimum (valence band maximum) continuously decreases (increases) from the top to the valley, forming an energy funneling. As a result, the excitons accumulate in the valley of wrinkles, and their accumulation ability increases with decreasing wrinkle wavelength. However, as the wavelength further decreases, the energy funneling will disappear, resulting in the excitons to part accumulate at the top of wrinkles and another part to accumulate at the valley of wrinkles. The critical wavelength for disappearance of energy funneling of zigzag wrinkled GeSe is 106nm. The physical origin is that when the top strain exceeds 4%, the bandgap will decrease. Due to the monotonic variation of bandgap with strain, the energy funneling effect of armchair wrinkled monolayer GeSe is still retained when the wavelength is reduced to 80 nm, and the accumulation of excitons is further enhanced. Our results demonstrate that the energy funneling effect induced by nonuniform can realize excitons accumulation in one material without the need for p-n junctions, which is of great benefit to collection of photogenerated excitons. Therefore, the proposed theory not only clarifies the physical mechanism regarding the anisotropic energy funneling effect of wrinkled monolayer GeSe, but also provides a new avenue to design next-generation optoelectronic devices.
  • [1]

    Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306666

    [2]

    Mak K F, Lee C, Hone J, Shan J, Heinz T F 2010 Phys. Rev. Lett. 105136805

    [3]

    Li L K, Yu Y J, Ye G J, Ge Q Q, Ou X D, Wu H, Feng D L, Chen X H, Zhang Y B 2014 Nat. Nanotechnol. 9372

    [4]

    Zhao H Q, Mao Y L, Mao X, Shi X, Xu C S, Wang C X, Zhang S M, Zhou D H 2018 Adv. Funct. Mater. 281704855

    [5]

    Zhou X, Hu X Z, Jin B, Yu J, Liu K L, Li H Q, Zhai T Y 2018 Adv. Sci. 51800478

    [6]

    Hu Y H, Zhang S L, Sun S F, Xie M Q, Cai B, Zeng H B 2015 Appl. Phys. Lett. 107122107

    [7]

    Xia C X, Du J, Huang X W, Xiao W B, Xiong W Q, Wang T X, Wei Z M, Jia Y, Shi J J, Li J B 2018 Phys. Rev. B 97115416

    [8]

    Xu Y F, Zhang H, Shao H Z, Ni G, Li J, Lu H L, Zhang R J, Peng Bo, Zhu Y Y, Zhu H Y, Soukoulis C M 2017 Phys. Rev. B 96245421

    [9]

    Kong X, Deng J K, Li L, Liu Y L, Ding X D, Sun J, Liu J Z 2018 Phys. Rev. B 98184104

    [10]

    Mao Y L, Xu C S, Yuan J M, Zhao H Q 2019 J. Mater. Chem. A 711265

    [11]

    Lu Q L, Yang W H, Xiong F B, Lin H F, Zhuang Q Q 2020 Acta Phys. Sin. 69196801[卢群林, 杨伟煌, 熊飞兵, 林海峰, 庄芹芹2020 69196801]

    [12]

    Muhammad Z, Li Y L, Abbas G, Usman M, Sun Z, Zhang Y, Lv Z Y, Wang Y, Zhao W S 2022 Adv. Electron. Mater. 82101112

    [13]

    Huang L, Wu F G, Li J B 2016 J. Chem. Phys. 144114708

    [14]

    Li Z B, Liu X S, Wang X, Yang Y, Liu S C, Shi W, Li Y, Xing X B, Xue D J, Hu J S 2020 Phys. Chem. Chem. Phys. 22914

    [15]

    Zuo B Min, Yuan J M, Feng Z, Mao Y L 2019 Acta Phys. Sin. 68113103[左博敏, 袁健美, 冯志, 毛宇亮2019 68113103]

    [16]

    Guo G X, Bi G 2018 Micro Nano Lett. 13600

    [17]

    Wang J J, Zhao Y F, Zheng J D, Wang X T, Deng X, Guan Z, Ma R R Zhong Ni,Yue F Y, Wei Z M, Xiang P H, Duan C G 2021 Phys. Chem. Chem. Phys. 2326997

    [18]

    Li Y, Ma K, Fan X, Liu F S, Li J Q, Xie H P 2020 Appl. Sur. Sci. 521146256

    [19]

    Feng J, Qian X F, Huang C W, Li J 2012 Nat. Photonics 6866

    [20]

    Li H, Contryman A W, Qian X F, Ardakani S Mo, Gong Y J, Wang X L, Weisse J M, Lee C H, Zhao J H, Ajayan P M, Li Ju, Manoharan H C, Zheng X L 2015 Nat. Commun. 67381

    [21]

    Jose P S, Parente V, Guinea F, Roldán R, Prada E 2016 Phys. Rev. X 6031046

    [22]

    Lam N H, Nguyen P, Cho S, Kim J 2023 Surf. Sci. 730122251

    [23]

    Zheng J D, Zhao Y F, Bao Z Q, Shen Y H, Guan Z, Zhong N, Yue F Yu, Xiang P H, Duan C G 20222D Mater. 9035005

    [24]

    Harats M G, Kirchhof J N, Qiao M X, Greben K, Bolotin K I 2020 Nat. Photonics 14324

    [25]

    Lee J, Yun S J, Seo C, Cho K, Kim T S, An G H, Kang K, Lee H S, Kim J Y 2020 Nano Lett. 2143

    [26]

    Wang J W, Han M J, Wang Q, Ji Y Q, Zhang X, Shi R, Wu Z F, Zhang L, Amini A, Guo L, Wang N, Lin J H, Cheng C 2021 ACS Nano 156633

    [27]

    Hao S J, Hao Y L, Li J, Wang K Y, Fan C, Zhang S W, Wei Y H, Hao G L 2024 Appl. Phys. Lett. 125072102

    [28]

    Dastgeer G, Afzal A M, Nazir G, Sarwar N 2021 Adv. Mater. Interfaces 82100705

    [29]

    Song Q C, An M, Chen X D, Peng Z, Zang J F, Yang N 2016 Nanoscale 814943

    [30]

    Ouyang G, Wang C X, Yang G W 2009 Chem. Rev. 1094221

    [31]

    Zhu Z M, Zhang A, Ouyang G, Yang G W 2011 Appl. Phys. Lett. 98263112

    [32]

    Dong J S, Zhao Y P, Ouyang G, Yang G W 2022 Appl. Phys. Lett. 120080501

    [33]

    Huang R 2005 J. Mech. Phys. Solids 5363

    [34]

    Jiang H Q, Khang D Y, Song J Z, Sun Y G, Huang Y G, Rogers J A 2007 Proc. Natl. Acad. Sci. 10415607

    [35]

    Khang D Y, Rogers J A, Lee H H 2008 Adv. Funct. Mater. 181

    [36]

    Iguiñiz N, Frisenda R, Bratschitsch R, Gomez A C 2019 Adv. Mater. 311807150

    [37]

    Guo Q L, Zhang M, Xue Z Y, Ye L, Wang G, Huang G S, Mei Y F, Wang X, Di Z F 2013 Appl. Phys. Lett. 103264102

    [38]

    Vellaa D, Bicoa J, Boudaoudb A, Romana B, Reis P M 2009 Proc. Natl. Acad. Sci. 10610901

    [39]

    Gomez A C, Roldan R, Cappelluti E, Buscema M, Guinea F, Zant H S J, Steele G A 2013 Nano Lett. 135361

    [40]

    Jiang J W, Zhou Y P 2017 DOI: 10.5772/intechopen.71929

    [41]

    Sun C Q 2007 Prog. Solid State Chem. 351

    [42]

    Zhu Y F, Jiang Q 2016 Coordin. Chem. Rev. 3261

    [43]

    Marcus R A 1956 J. Chem. Phys. 24966

    [44]

    Wang J H, Ding T, Gao K M, Wang L F, Zhou P W, Wu K F 2021 Nat. Commun. 126333

    [45]

    Ghosh R, Papnai B, Chen Y S, Yadav K, Sankar R, Hsieh Y P, Hofmann M, Chen Y F 2023 Adv. Mater. 352210746

    [46]

    Garzona L V, Frisenda R, Gomez A C 2019 Nanoscale 1112080

    [47]

    Shang H X, Liang X, Deng F, Hu S L, Shen S P 2022 Int. J. Mech. Sci. 234107685

    [48]

    Shang H X, Dong H T, Wu Y H, Deng F, Liang X, Hu S L, Shen S P 2024 Phys. Rev. Lett. 132116201

    [49]

    Zhang Z, Zhao Y P, Ouyang G 2017 J. Phys. Chem. C 12119296

    [50]

    Furchi M M, Pospischil A, Libisch F, Burgdörfer J, Mueller T 2014 Nano Lett. 144785

    [51]

    Lee C H, Lee G H, Zande A M, Chen W C, Li Y L, Han M Y, Cui X, Arefe G, Nuckolls C, Heinz T F, Guo J, Hone J, Kim P 2014 Nat. Nanotechnol. 9676

    [52]

    Cao G Y, Shang A X, Zhang C, Gong Y P, Li S J, Bao Q L, Li X F 2016 Nano Energy 30260

  • [1] 段聪, 刘俊杰, 陈永杰, 左慧玲, 董健生, 欧阳钢. MoS2/SiO2界面黏附性能的尺寸和温度效应.  , doi: 10.7498/aps.73.20231648
    [2] 刘俊杰, 左慧玲, 谭鑫, 董健生. 褶皱状单层GeSe各向异性的能带漏斗效应*.  , doi: 10.7498/aps.73.20241155
    [3] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究.  , doi: 10.7498/aps.71.20211843
    [4] 孟雨欣, 赵漪凡, 李绍春. 褶皱状蜂窝结构的单层二维材料研究进展.  , doi: 10.7498/aps.70.20210638
    [5] 胡威威, 孙进昌, 张玗, 龚悦, 范玉婷, 唐新峰, 谭刚健. 利用晶体结构工程提升GeSe化合物热电性能的研究.  , doi: 10.7498/aps.70.20211843
    [6] 陈超, 段芳莉. 氧化石墨烯褶皱行为与结构的分子模拟研究.  , doi: 10.7498/aps.69.20200651
    [7] 陈璐, 李烨飞, 郑巧玲, 刘庆坤, 高义民, 李博, 周长猛. B2-和B19'-NiTi表面原子弛豫、表面能、电子结构及性能的理论研究.  , doi: 10.7498/aps.68.20181944
    [8] 金峰, 张振华, 王成志, 邓小清, 范志强. 石墨烯纳米带能带结构及透射特性的扭曲效应.  , doi: 10.7498/aps.62.036103
    [9] 孙伟峰, 郑晓霞. 第一原理研究界面弛豫对InAs/GaSb超晶格界面结构、能带结构和光学性质的影响.  , doi: 10.7498/aps.61.117301
    [10] 黄多辉, 王藩侯, 程晓洪, 万明杰, 蒋刚. GeTe和GeSe 分子在外电场下的特性研究.  , doi: 10.7498/aps.60.123101
    [11] 桑萃萃, 万建杰, 董晨钟, 丁晓彬, 蒋 军. 锂原子光电离过程中的弛豫效应.  , doi: 10.7498/aps.57.2152
    [12] 邵明珠, 罗诗裕. 正弦平方势与带电粒子沟道效应的能带结构.  , doi: 10.7498/aps.56.3407
    [13] 马新国, 唐超群, 黄金球, 胡连峰, 薛 霞, 周文斌. 锐钛矿型TiO2(101)面原子几何及弛豫结构的第一性原理计算.  , doi: 10.7498/aps.55.4208
    [14] 晁月盛, 孙少权, 滕功清, 赖祖涵. 高密度脉冲电流对非晶Fe-Ni-Si-B合金结构弛豫与晶化的促进效应.  , doi: 10.7498/aps.45.1506
    [15] 李富斌. Fr?hlich极化子的能带非抛物性效应理论.  , doi: 10.7498/aps.40.610
    [16] 李玉璋, 徐仲英, 葛惟锟, 许继宗, 郑宝贞, 庄蔚华. 多量子阱结构中热载流子弛豫过程中的非平衡声子效应.  , doi: 10.7498/aps.38.1540
    [17] 范希庆, 王国樑, 刘福绥. 玻璃中结构弛豫的红外发散响应.  , doi: 10.7498/aps.35.896
    [18] 夏建白. Si,GaAs(111)表面弛豫效应.  , doi: 10.7498/aps.33.143
    [19] 李景德. 热电弛豫效应.  , doi: 10.7498/aps.33.1563
    [20] 龙期威, 王桂琴. 金属原子键强度的电子结构分析.  , doi: 10.7498/aps.17.1-2
计量
  • 文章访问数:  160
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 上网日期:  2024-11-01

/

返回文章
返回
Baidu
map